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LIST OF SYMBOLS 
 
The following symbols are used in this report.   
 
SECTION 1 
 
None 
 
SECTION 2 
 
None 
 
SECTION 3 
 
A, B, C, D, E, F: Site Class 
a: exponent of velocity in model of viscous dampers 
amax: maximum acceleration 
B:  factor for reducing displacement when effective damping exceeds 0.05 
CFV: correction factor for velocity 
Cj: damping constant of j-th linear damper 
CN: constant in force-velocity relation of viscous dampers 
D: isolator or damper displacement  
DDECK: total deck displacement 
Dmax: maximum displacement 
DR: permanent displacement or ratio Qd/Kd 

DD:  isolator displacement in the DE 

DM:  isolator displacement in the MCE 

DTM: isolator displacement in the MCE including torsion effects 
Dy: yield displacement 
E: energy dissipated per cycle by isolators / modulus of elasticity 
ED: energy dissipated per cycle by viscous damping devices 
F: force 
FD: design force or damper force 
Fe: elastic force demand 
fmin: coefficient of sliding friction at near zero velocity  
Fy: yield force 
g: acceleration of gravity 
h: distance of centroidal axis from foundation  
I: moment of inertia 
j: number of individual viscous damping device 
KC: column lateral stiffness 
Kd: isolator post-elastic stiffness  
Keff:  effective stiffness 
KF: lateral foundation stiffness 
KIS:  isolator effective stiffness 
KR: rotational foundation stiffness 



13 
 

L: length of column 
N: total number of viscous devices 
Qd: isolator characteristic strength (force at zero displacement) 
Re: effective radius of curvature 
R, RW, RO, RY, R: response modification factors 
Sa: spectral acceleration 
Sd: spectral displacement 
T: period 
Teff: effective period 
uF: foundation displacement 
uC: column displacement 
V: velocity 
Vb: isolation system shear force 
W: weight 
Y: yield displacement 
: damping ratio 
eff: effective damping ratio 
V: viscous component of effective damping ratio 
: parameter used in calculation of force contributed by viscous dampers 
: parameter used in the calculation of energy dissipated by viscous dampers 
: characteristic strength divided by weight or coefficient of friction 
: foundation rotation or angle of damper 
 
SECTION 4 
 
AL: area of lead plug of lead-rubber bearing 
A: bonded rubber area of elastomeric bearing 
d1, d2, d3, d4: nominal displacement capacities of Double and Triple FP bearings 
d*1, d*2, d*3, d*4: actual displacement capacities of Double and Triple FP bearings 
F: restoring force 
Fdr1, Fdr4: characteristic force values 
Ffi: friction force at interface i 
h: distance between pivot point and boundary of concave surface 
h1, h2, h3, h4: heights of Double and Triple FP bearings 
G: shear modulus 
G1c: shear modulus of rubber in first cycle of seismic motion 
G3c: average value of shear modulus of rubber over three cycles of seismic motion 
Kd: isolator post-elastic stiffness  
p: apparent pressure in sliding bearings (load over area) 
Qd: isolator characteristic strength (force at zero displacement) 
R: radius of curvature 
Re: effective radius of friction pendulum bearing 
R1, R2, R3, R4: radii of curvature of surfaces 1, 2, 3, and 4, respectively, of Double and 
Triple FP bearings 
Reff1, Reff2, Reff3, Reff4: effective radii of curvature of surfaces 1, 2, 3, and 4, respectively, of 
Double and Triple FP bearings 
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Tr: total rubber thickness 
u: displacement 
u*, u**, udr1, udr4: characteristic displacement values 
W: axial load on bearing 
Y: yield displacement 
: coefficient of friction 
1C: coefficient of friction in first cycle of seismic motion 
3C: average coefficient of friction over three cycles of seismic motion 
1, 2, 3, 4: coefficient of friction in surfaces 1, 2, 3, and 4, respectively, of Double and 
Triple FP bearings 
TR: coefficient of friction under thermal and traffic load effects 
L: effective yield stress of lead 
L1: effective yield stress of lead in first cycle of seismic motion 
L3: average effective yield stress of lead over three cycles of seismic motion 
LTH: effective yield stress of lead under thermal conditions of speed 
LTR: effective yield stress of lead under traffic load effects 
 
SECTION 5 
 
A: bonded rubber area of elastomeric bearing / mounting plate dimension 
Ac: area to transfer load  
Ar: reduced bonded rubber area of elastomeric bearing 
b: dimension of equivalent rectangular reduced area  
b1: dimension of area of concrete carrying load 
B: long plan dimension of rectangular bearing or dimension in general 
C: mounting plate dimension 
cs: rubber cover thickness 
D: diameter of circular elastomeric bearing or displacement 
Da, Dr: 2010 AASHTO LRFD Specifications notation for f1, f2 respectively 
D1: displacement when stiffening of elastomeric bearings occurs 
Dcr: critical displacement at which overturning of an elastomeric bearing occurs 
DL: lead core diameter 
Do: outer diameter of hollow circular elastomeric bearing 
Di: inner diameter of hollow circular elastomeric bearing 
FH: horizontal bearing force 
Fy: yield stress  
Fye: expected yield strength  
f1: coefficient for calculation of shear strain due to compression 
f2: coefficient for calculation of shear strain due to rotation 
fb: concrete design bearing strength 
fc’: concrete compression strength 
G: shear modulus of rubber 
h: height of elastomeric bearing 
h’: total height of the bearing including the end plates 
I: least moment of inertia of the bonded area of rubber 
K: bulk modulus of rubber 
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K1: post-elastic stiffness of elastomeric bearing 
K2: stiffness of elastomeric bearing is stiffening range at large displacements 
Keff: effective stiffness 
L: short plan dimension of rectangular bearing or dimension in general 
M, Mu: moment 
N: number of elastomeric layers 
P: axial load 
PD: dead load 
PL: live load 
PLst: static component of live load 
PLcy: cyclic component of live load 
PSL: seismic live load 
PE: bearing axial load due to seismic effects 
Pcr: critical load in un-deformed configuration 
P’cr: critical load in deformed configuration 
Pu: factored load 
p(r): vertical pressure 
Q: characteristic strength (force at zero displacement) 
Ry: response modification factor 
r: radius of gyration / loading arm 
S: shape factor 
t: rubber layer thickness / end plate thickness 
tg: thickness of grout  
ti: thickness of reinforcing shims 
ts: steel reinforcing shim thickness 
tip: top mounting plate thickness 
tbp: bottom mounting plate thickness 
ttp: internal plate thickness 
T: bolt tension 
Tr: total rubber thickness 
u: displacement 
: parameter used in assessing the adequacy of steel shims (values 1.65 or 3.0) 
: load factor or factor with value 0.25 or 0.5 
D: load factor for dead load 
L: load factor for live load 
C: shear strain in rubber due to compression 
S: shear strain in rubber due to lateral displacement 
p: load factor D as denoted in AASHTO LRFD 
r: shear strain in rubber due to rotation 
: parameter used in the calculation of reduced area 
: displacement 
S: non-seismic lateral displacement  
E: seismic lateral displacement  
Sst: static component of non-seismic lateral displacement  
Scy: cyclic component of non-seismic lateral displacement  
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: angle of bearing rotation 
S: non-seismic rotation 
Sst: static component of non-seismic rotation 
Scy: cyclic component of non-seismic rotation 
: parameter depending on the assumption for the value of the rotational modulus  
: Poisson’s ratio 
z: normal stress in vertical direction 
r: normal stress in radial direction 
: normal stress in circumferential direction 
max: maximum shear stress 
: capacity reduction (or resistance) factor 
c: capacity reduction factor for calculating concrete bearing strength 
b: capacity reduction factor for flexure of bearing plates 
 
SECTION 6 
 
A: bonded rubber area of elastomeric bearing  
Ar: reduced bonded rubber area of elastomeric bearing 
B: long plan dimension of rectangular bearing  
f1: coefficient for calculation of shear strain due to compression 
f2: coefficient for calculation of shear strain due to rotation 
FDE: bearing lateral force in the design earthquake 
FS: bearing lateral force under service conditions 
Fy: yield stress  
G: shear modulus of rubber 
hrt: total rubber thickness (per  AASHTO 2010) 
L: short plan dimension of rectangular bearing  
P: axial load 
PD: dead load 
PL: live load 
PLst: static component of live load 
PLcy: cyclic component of live load 
PSL: seismic live load 
Pcr: critical load in un-deformed configuration 
P’cr: critical load in deformed configuration 
Pu: factored load 
S: shape factor 
Si: shape factor (per AASHTO 2010) 
t: rubber layer thickness 
ts: steel reinforcing shim thickness 
Tr: total rubber thickness 
: parameter used in assessing the adequacy of steel shims (values 1.65 or 1.1) 
: factor with value 0.5 
D: load factor for dead load 
L: load factor for live load 
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C: shear strain in rubber due to compression 
S: shear strain in rubber due to lateral displacement 
r: shear strain in rubber due to rotation 
S: non-seismic lateral displacement  
EDE: seismic lateral displacement  
Sst: static component of non-seismic lateral displacement  
Scy: cyclic component of non-seismic lateral displacement  
S: non-seismic rotation 
Sst: static component of non-seismic rotation 
Scy: cyclic component of non-seismic rotation 
: friction coefficient 
S: stress (per AASHTO 2010) 
 
SECTION 7 
 
A: area 
APTFE=apparent area of PTFE in contact with stainless steel  
d: distance between center of rotation of spherical bearing and centroidal axis of girder 
Dm: projected diameter of loaded surface of spherical bearing 
e: eccentricity 
Fy: yield stress  
H: horizontal load 
M: moment 
P: vertical load 
R: radius of curvature  
s: horizontal displacement 
T: thickness of concave plate 
r, , : spherical coordinates 
: angle between vertical and  horizontal load vectors 
: minimum angle of convex surface 
: design rotation angle 
: coefficient of friction 
: normal stress or maximum permissible stress at strength limit 
: friction traction 
: rotation of bearing 
: subtended semi-angle of curved surface 
 
SECTION 8 
 
A1, B, A, a1, b, b1, L, r: dimension or distance 
D: diameter 
f1: pressure value 
fb: concrete design bearing strength 
fc’: concrete compression strength 
F: horizontal load 
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Fy: yield stress of plate material 
h, h1, h2: height 
l: plate length 
M: moment 
Mp: plastic moment 
Mu: ultimate moment or required plate bending strength 
P: axial load 
PD: dead load 
PL: live load 
PSL: seismic live load 
PEDE: bearing axial load due to seismic DE effects 
PEMCE: bearing axial load due to seismic MCE effects 
Pu: factored load 
t: plate thickness 
W, Wi, We: work done 
D: load factor for dead load 
L: load factor for live load 
, 1, 2: displacement 
: Poisson’s ratio 
: capacity reduction (or resistance) factor 
c: capacity reduction factor for calculating concrete bearing strength 
b: capacity reduction factor for flexure of bearing plates 
 
SECTION 9 
 
APTFE=apparent area of PTFE in contact with stainless steel 
Ab: nominal bolt area 
AVc: projected area of failure on side of concrete pedestal 
AVco: projected area of single anchor 
a1, b, b1, r: dimension or distance 
B: dimension of PTFE area  (diameter if circular; side if square) 
c: minimum vertical clearance  
Ca1, Ca2: distances of shear lug to edge of concrete pedestal 
Cm: chord length of convex plate 
CF: correction factor 
d: bolt diameter 
da: shear lug diameter 
Dm: projected diameter of loaded surface of spherical bearing 
DBact: concave plate arc length 
fb: concrete design bearing strength 
fc’: concrete compression strength 
FV: ultimate shear stress of bolt  
Fy: minimum yield stress  
H: height of convex spherical surface 
Hact: overall height of convex plate 
le: effective length of shear lug 
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Lcp: dimension of square concave plate 
Lsp: longitudinal dimension (length) of sole plate 
Lmp: longitudinal dimension (length) of masonry plate 
LSS: longitudinal dimension (length) of stainless steel plate 
l: plate length 
Mm: minimum metal depth of concave surface 
Mu: required plate bending strength 
n: number of anchors 
t: plate thickness 
tPTFE: PTFE thickness 
Tsp: thickness of sole plate 
Tmax: total thickness of concave plate 
Tmin: minimum thickness of concave plate (=0.75inch) 
Wsp: transverse dimension (width) of sole plate 
Wmp: transverse dimension (width) of masonry plate 
WSS: transverse dimension (width) of stainless steel plate 
P: vertical load 
PD: dead load 
PHmax: maximum value of horizontal load on bearing 
PVmin: minimum value of vertical load on bearing 
PL: live load 
PLst: static component of live load 
PLcy: cyclic component of live load 
PEDE: bearing axial load due to seismic DE effects 
Pv: factored vertical load 
R: radius of curvature 
Rn: nominal shear resistance of bolt 
tPTFE: thickness of PTFE sheet 
V: shear force on anchor 
Vb: basic concrete breakout shear strength of anchor  
Vcb: nominal concrete breakout shear strength  
Y: dimension (see Figure 9-2) 
: minimum angle of convex surface 
D: load factor for dead load 
L: load factor for live load 
: design rotation angle 
SL: non-seismic lateral displacement in longitudinal direction 
ST: non-seismic lateral displacement in transverse direction 
EL: design value of displacement in longitudinal direction (non-seismic plus MCE 
displacement) 
ET: design value of displacement in transverse direction (non-seismic plus MCE 
displacement) 
EDEL: seismic lateral displacement in longitudinal direction  
EDET: seismic lateral displacement in transverse direction 
SL: non-seismic rotation about longitudinal axis 
ST: non-seismic rotation about transverse axis 
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E: maximum value of rotation (max of EL and ET) 

EL: design value for rotation about longitudinal axis (non-seismic plus MCE rotation) 
ET: design value for rotation about transverse axis (non-seismic plus MCE rotation) 
EDEL: seismic rotation about longitudinal axis 
EDET: seismic rotation about transverse axis 
: parameter in calculation of basic concrete breakout shear strength of anchor 
: coefficient of friction 
edge: maximum normal stress on PTFE 
ave: average normal stress on PTFE  
ss:  stress limit on PTFE for dead or combined dead and live load (un-factored) 
: capacity reduction (or resistance) factor 
c: capacity reduction factor for calculating concrete bearing strength 
b: capacity reduction factor for flexure of bearing plates 
: subtended semi-angle of curved surface 

,ed V , ,c V , ,h V  : parameters in calculation of nominal concrete breakout shear strength  

 
SECTION 10 
 
E: modulus of elasticity 
EJ: error in scaling process 
FJ: scale factor  
KX’, KY’, KZ’, KrX’, KrY’, KrZ’: foundation spring constants 
MW: moment magnitude 
PD: dead load 
PL: live load 
r: Campbell R distance 
SFN: spectral acceleration of fault normal component 
SFP: spectral acceleration of fault parallel component 
SDE: spectral acceleration of target DE spectrum 
T, Ti: period 
Teff: effective period 
wi: weight factor in scaling process 
 
SECTION 11 
 
A: area of element 
B: damping parameter 
D: displacement 
DD:  isolator displacement in the DE 
Dabut: abutment bearing displacement 
Dpier: pier bearing displacement 
E: modulus of elasticity 
g: acceleration of gravity 
h: height of element 
I: moment of inertia of element 
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J: torsional constant 
K: stiffness 

Keff:  effective stiffness 
Re: effective radius of friction pendulum bearing 
Reff1, Reff2, Reff3, Reff4: effective radii of curvature of surfaces 1, 2, 3 and 4 of Triple FP 
bearing 
T: period 
Teff: effective period 
V: base shear force 
W: weight on bearing or weight of structure 
Wabut: weight on abutment bearing 
Wpier: weight on pier bearing 
Y: yield displacement 
S: non-seismic lateral displacement  
EDE: seismic lateral displacement in the DE 
EMCE: seismic lateral displacement in the MCE 
: coefficient of friction 
1, 2, 3, 4: coefficient of friction on surfaces 1, 2, 3 and 4 of Triple FP bearing 
abut: coefficient of friction at abutment bearing 
pier: coefficient of friction at pier bearing 
 
SECTION 12 
 
A: area of element 
Ar: reduced bonded rubber area of lead-rubber bearing 
B: damping parameter 
D: displacement 
DD:  isolator displacement in the DE 
Dabut: abutment bearing displacement 
Dpier: pier bearing displacement 
E: modulus of elasticity 
Ec: compression modulus 
Er: rotational modulus 
F: factor to compute the compression modulus (1.0) 
Fy: yield force 
G: shear modulus of rubber 
h: height of element 
I: moment of inertia of element 
Ir: bonded rubber area moment of inertia 
J: torsional constant 
K: elastic stiffness of lead-rubber bearing or rubber bulk modulus 
Kd: post-elastic stiffness of lead-rubber bearing 
Keff:  effective stiffness  
Kv: vertical stiffness of lead-rubber bearing 
Qd: characteristic strength (force at zero displacement) of lead-rubber bearing 
r: ratio of post-elastic stiffness to elastic stiffness of lead-rubber bearing 
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S: shape factor 
T: period 
Teff: effective period 
Tr: total rubber thickness 
V: base shear force 
W: weight on bearing or weight of structure 
Wabut: weight on abutment bearing 
Wpier: weight on pier bearing 
Y: yield displacement 
S: non-seismic lateral displacement  
EDE: seismic lateral displacement in the DE 
EMCE: seismic lateral displacement in the MCE 
 
SECTION 13 
 
A: area of element 
B: damping parameter 
D: displacement 
DD:  isolator displacement in the DE 
E: modulus of elasticity 
fmax, fmin: link element friction (fast, slow)  
h: height of element 
I: moment of inertia of element 
J: torsional constant 
K: stiffness 

Keff:  effective stiffness 
Re: effective radius of friction pendulum bearing 
T: period 
Teff: effective period 
W: weight on bearing or weight of structure 
Y: yield displacement 
: coefficient of friction 
 
SECTION 14 
 
None 
 
SECTION 15 
 
None 
 
Common Subscripts: 
 
DE: design earthquake 
MCE: maximum considered earthquake 
max: maximum 
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min: minimum 
s: service conditions 
st: static conditions 
cy: cyclic conditions 
 
Common Superscripts: 
 
u: ultimate conditions 
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SECTION 1 
INTRODUCTION 

 
Current design procedures for bridge bearings and seismic isolators are based on different 
and conflicting procedures.  Furthermore, these design procedures are not based on 
contemporary LRFD framework-a situation that may result in inconsistency, difficulty 
and confusion in design applications. The research work presented in this report first 
reviews the current design procedures and then develops analysis and design 
specifications for bridge bearings, seismic isolators and related hardware that are  
 

(a) Based on the LRFD framework,  
(b) Based on similar fundamental principles, which include the latest developments 

and understanding of behavior, and  
(c) Applicable through the same procedures regardless of whether the application is 

for seismic-isolated or conventional bridges.   
 
The significance of a unified analysis and design procedure for conventional bridge 
bearings and seismic isolators is highlighted by the emerging philosophy that all bearing 
systems must be designed for the expected displacement and force demands in seismic 
actions.  The research work described in this report is based mainly on earlier work 
funded by Caltrans (contract 65A0174) and MCEER and presented in two recent reports 
by the first author: “Performance of Seismic Isolation Hardware under Service and 
Seismic Loading” and “Seismic Isolation of Bridges” and earlier work also supported by 
Caltrans (contract 59A0436) and presented in report “Experimental Investigation on the 
Seismic Response of Bridge Bearings” by the University of California, Berkeley.  The 
first two reports presented a preliminary framework of LRFD-based, multi-level seismic 
loading procedures for the analysis and design of isolators, whereas the third report 
presented test data needed to understand the deformation and strength limits of selected 
bridge bearings.  This research work extends, calibrates, tests and finalizes this 
preliminary framework for bridge bearings, isolators and related hardware. 
 
The methodology used in this work is based on  
 

(a) The utilization of the latest information on the behavior of bridge bearings and 
seismic isolators,  

(b) The development of design procedures for bridge bearings and seismic isolators 
based on ultimate strength concepts,  

(c) The consideration of systematic methods of bounding analysis with due account 
given to the lifetime behavior of bridge bearings and isolators,  

(d) The survey of additional research and test data needed to calibrate the design 
procedures and specify limits of mechanical behavior and strength, and  

(e) The development of a set of examples of application of the developed analysis 
and design procedures.  

 
The unified LRFD design procedures developed in this report should enable the 
California Department of Transportation engineers and its consultants, and engineers in 
the U.S. and elsewhere to design bridge bearings and seismic isolators using identical 



25 
 

procedures based on contemporary ultimate strength principles. This would enable the 
design of bridges in such a way that would ensure acceptable performance over the 
lifetime of the structure and for all types of service and seismic loadings. The end result 
would be an increased confidence in the use of bridge bearings and seismic isolators.  It 
is believed that this document will serve as a resource document for a Memorandum to 
Designers by the California Department of Transportation for the analysis and design of 
bridge bearings and isolators.   
 
This report contains fourteen sections, a list of references, and five appendices. Chapter 1 
provides an introduction to the research. Chapter 2 reviews the basic principles of seismic 
isolation of bridges. Chapter 3 describes the various analysis methods of seismically 
isolated bridges. Chapter 4 reviews the mechanical properties of modern seismic 
isolators. Chapter 5 presents a formulation for the assessment of adequacy of elastomeric 
seismic isolation bearings in bridges. Supporting documentation is presented in Appendix 
A.  Chapter 6 presents a formulation for the assessment of adequacy of steel reinforced 
(non-seismic) expansion elastomeric bearings. Chapter 7 reviews the properties and 
behavior of spherical bearings that are used either as large displacement capacity 
expansion bridge bearings (flat sliding bearings) or as fixed bridge bearings. Chapter 8 
develops a procedure for the design of end plates of sliding bearings. Chapter 9 describes 
in detail a design example of a spherical sliding bearing that demonstrates the application 
of analysis and bearing design procedures also described in the same chapter. Chapter 10 
describes a bridge used as example of analysis and design procedures for seismic 
isolators. Supporting calculations for service load analysis of the example bridge are 
presented in Appendix B.  Chapters 11 to 13 present, respectively, analysis and design 
calculations (with details provided in Appendices C to E) for a Triple Friction Pendulum, 
a Lead-Rubber and a Single Friction Pendulum isolation system for the example bridge.   
Finally, Chapter 14 presents a summary and the main conclusions of the study. 
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SECTION 2 
PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 

 
The seismic design of conventionally framed bridges and buildings relies on the 
dissipation of earthquake-induced energy through inelastic (nonlinear) response in 
selected components of the structural frame. Such response is associated with structural 
damage that produces direct (capital) loss repair cost, indirect loss (possible closure, re-
routing, business interruption) and perhaps casualties (injuries, loss of life). Traditional 
seismic analysis and design procedures do not permit the accurate estimation of structural 
deformations and damage, making it very difficult to predict the likelihood of direct and 
indirect losses and casualties. 
 
Seismic protective systems, herein assumed to include seismic (base) isolators and 
damping (energy dissipation) devices, were developed to mitigate the effects of 
earthquake shaking on bridges and buildings. Seismic isolators are typically installed 
between the girders and bent caps (abutments) in bridges and the foundation and first 
suspended level in a building. For bridge construction, the typical design goals associated 
with the use of seismic isolation are a) reduction of forces (accelerations) in the 
superstructure and substructure, and b) force redistribution between the piers and the 
abutments.  

Contemporary seismic isolation systems for bridge applications provide a) horizontal 
isolation from the effects of earthquake shaking, and b) an energy dissipation mechanism 
to reduce displacements. Figure 2-1a illustrates the effect of horizontal isolation on the 
inertial forces that can develop in a typical bridge. The elongation of the fundamental 
period (period shift in Figure 2-1a) of the bridge can substantially reduce, by a factor 
exceeding 3 in most cases, the accelerations that can develop in a bridge superstructure. 
Such significant reductions in force (acceleration) enable the cost-effective construction 
of bridges that respond in the elastic range (no damage) in design earthquake shaking. 
Figure 2-7b illustrates the effect of isolation on the displacement response of the bridge. 
It must be noted that nearly all of the displacement will typically occur over the height of 
the isolator and not in the superstructure, piers or abutments.  

 

 
a. reduction in spectral accelerations by 

period increase 

 
b. control of spectral displacements by 

energy dissipation 
 
FIGURE 2-1  Principles of Seismic Isolation
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The increase in displacement response associated with the use of seismic isolators has a 
deleterious impact on expansion joints in bridges. To control displacements, and thus 
reduce demands on joints and the cost of the isolators, damping (energy dissipation) is 
typically introduced in the isolator. Damping in the two most common bridge seismic 
isolators in use in California, the Lead-Rubber (LR) Bearing and the Friction Pendulum 
(FP) bearing in its most common configurations, is achieved through hysteretic energy 
dissipation, leading to the shear-force-lateral displacement relationship of Figure 2-2.  
 

 
FIGURE 2-2  Hysteretic Damping in LR and FP Bearings
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SECTION 3 
ANALYSIS METHODS OF SEISMICALLY ISOLATED BRIDGES 

 
3.1 Introduction 
 
Methods of analysis of seismically isolated bridges consist of (a) the single mode or 
simplified method, (b) the multimode or response spectrum method, and (c) the response 
history analysis method. The latter is the most accurate method of analysis and can be 
implemented in a variety of computer software.   Currently, nonlinear response history 
analysis is typically used for the analysis of all seismically isolated structures.  Simplified 
analysis is also always performed in order to evaluate the results of the dynamic analysis 
and obtain lower bounds for response quantities. 
 
The single mode and the multimode methods of analysis are based on representing the 
behavior of isolators by linear elastic elements with stiffness equal to the effective or 
secant stiffness of the element at the actual displacement. The effect of energy dissipation 
of the isolation system is accounted for by representing the isolators with equivalent 
linear viscous elements on the basis of the energy dissipated per cycle at the actual 
displacement. The response is then calculated by use of response spectra that are 
modified for the effect of damping larger than 5-percent of critical. Given that the actual 
displacement is unknown until the analysis is performed, these methods require some 
iteration until the assumed and calculated values of isolator displacement are equal. 
 
This section briefly describes methods of analysis for seismically isolated bridges and 
provides information on the following related topics: 
 

a) Modification of response spectrum for higher damping 
b) Calculation of maximum velocity and maximum force in isolation systems with 

viscous damping devices  
c) Response modification factors 
d) Re-centering capability in isolation systems 

 
3.2 Loadings for the Analysis and Design of Seismically Isolated Bridges 
 
Design of a seismically isolated bridge requires analysis for service conditions and for 
seismic conditions in the design earthquake (DE) and the maximum considered 
earthquake (MCE). Unlike conventional bridges, the MCE effects are explicitly 
considered to ensure that the isolators maintain their integrity with minimal, if any, 
damage.   
 
Service and seismic loadings are described in applicable bridge design specifications 
(AASHTO, 2007, 2010).  The recent 2010 AASHTO LRFD Specifications revised the 
definition of the design earthquake to one defined by a probabilistic response spectrum 
having a 7% probability of being exceeded in 75 years (approximate return period of 
1000 years).  Response spectra of the DE so defined can be constructed based on mapped 
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values of parameters in the 2010 AASHTO LRFD Specifications (also available in 
electronic format).  
The State of California has taken a modified approach in which the DE response 
spectrum is specified to be the largest of (a) a probabilistic response spectrum calculated 
in accordance with the 2008 USGS National Hazard Map for a 5% probability of being 
exceeded in 50 years (or 975 years return period, which is equivalent to a 7% probability 
of being exceeded in 75 years spectrum), and (b) a deterministic median response 
spectrum calculated based on the “Next Generation Attenuation” project of the PEER-
Lifelines program.  Spectra for this design earthquake are available on line through the 
Caltrans Acceleration Response Spectra (ARS) Online website                              
( http://dap3.dot.ca.gov/shake_stable/index.php ).  
 
The maximum considered earthquake is defined herein in terms of its effects on the 
isolation system bearings.  These effects will be defined as those of the DE multiplied by 
a factor larger than unity.   The value of the factor may be determined on the basis of 
scientific analysis with due consideration for (a) the maximum effects that the maximum 
earthquake may have on the isolation system, (b) the methodology used to calculate the 
effects of the DE, and (c) the acceptable margin of safety desired.  In general, the value of 
this factor will depend on the isolation system properties and the location of the site.  
Herein, a presumably conservative value of 1.5 will be utilized for calculating the effects 
on isolator displacements.  The corresponding value for the effects on forces is not 
provided but is left to the Engineer to determine.  In general, values of this factor will be 
in the range of 1.0 to 1.5. 
 
3.3 Modification of Response Spectrum for Higher Damping 
 
The 5%-damped elastic response spectrum represents the usual seismic loading 
specification. Spectra for higher damping need to be constructed for the application of 
simplified methods of analysis, whether single or multimode methods. Elastic spectra 
constructed for higher viscous damping are useful in the analysis of linear elastic 
structures with linear viscous damping systems. Moreover, they are used in the simplified 
analysis of yielding structures or structures exhibiting hysteretic behavior since simplified 
methods of analysis are based on the premise that these structures may be analyzed by 
using equivalent linear stiffness and equivalent linear viscous damping representations.  

The typical approach of constructing an elastic spectrum for damping greater than 5-
percent is to divide the 5%-damped spectral acceleration by a damping coefficient or 
damping reduction factor B: 

    
B

%5,TS
,TS a

a   (3-1) 

where  ,aS T   is the spectral acceleration at period T for damping ratio . Note that the 

spectral acceleration is the acceleration at maximum displacement and is not necessarily 
the maximum acceleration (it does not contain any contribution from any viscous force) 
Therefore, it is related directly to the spectral displacement dS through  
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 a2
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4

T
S


  (3-2) 

 
The damping reduction factor B is a function of the damping ratio and may be a function 
of the period. 
 
Equation (3-1) is typically used to obtain values of coefficient B for a range of values of 
period T and for selected earthquake motions. The results for the selected earthquake 
motions are statistically processed to obtain average or median values, which upon 
division of the value for 5% damping to the value for damping   results the 
corresponding value of B. The results are affected by the selection of the earthquake 
motions and the procedures used to scale the motions in order to represent a particular 
smooth response spectrum. Furthermore, the values of the factor B used in codes and 
specifications are typically on the conservative side, are rounded and are based on 
simplified expressions. 
 
Table 3-1 presents values of the factor B in the following codes and specifications: (a) 
1999 AASHTO Guide Specification for Seismic Isolation Design (American Association 
of State Highway and Transportation Officials, 1999), ASCE 7-10 (American Society of 
Civil Engineers, 2010, Eurocode 8 (European Committee for Standardization, 2005) and 
the 2010 revision of the AASHTO Guide Specifications for Seismic Isolation Design. 
The AASHTO and the Eurocode 8 present equations for factor B, whereas the other 
documents present values of B in tabular format. The equation in the 2010 revision of the 
AASHTO Guide Specifications is 
 

 
0.3

0.05
B

   
 

 (3-3) 

 
The equation in Eurocode 8 is 

 
0.05

0.10
B


  (3-4) 

 
The values of the factor B in Table 3-1 calculated by use of equations (3-3) and (3-4) 
were rounded to the nearest number with one decimal accuracy. 
 
The values of the factor B in various codes and specifications are nearly identical for 
values of damping ratio less than or equal to 30%. This is the limit of damping ratio for 
which simplified methods of analysis can be used.  
 
Recommendation: 
 
It is recommended that designers use equation (3-3) for calculating the damping 
reduction factor B. 
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3.4 Maximum Velocity and Maximum Force in Isolation Systems with Viscous 
Damping Devices 
 
Consider a seismically isolated structure represented as a single degree of freedom 
system with weight W and lateral force-displacement relation of its isolation system 
having bilinear hysteretic characteristics as shown in Figure 3-1. The system is 
characterized by characteristic strength dQ  and post-elastic stiffness dK . For the FP 

system, dQ W and /d eK W R , where is the coefficient of friction at large velocity 

of sliding and eR is the effective radius of curvature.  

 
TABLE 3-1 Values of Damping Reduction Factor B in Codes and Specifications 

 

 
 (%) 

 
1999  

AASHTO 

 
ASCE 7-10 

 
2010 

AASHTO 

 
EUROCODE 8 

2 0.8 0.8 0.8 0.8 
5 1.0 1.0 1.0 1.0 
10 1.2 1.2 1.2 1.2 
20 1.5 1.5 1.5 1.6 
30 1.7 1.71 or 1.82 1.7 1.9 
40 1.9 1.91 or 2.12 1.9 2.1 
50 2.0 2.01 or 2.42 2.0 2.3 

1 Value for isolated structures (Chapter 17) 
2 Value for structures with damping systems (Chapter 18)

 
 

POST-ELASTIC 
STIFFNESS 

Kd 
Qd 

LATERAL
DISPLACEMENT 

LATERAL
FORCE

CHARACTERISTIC 
STRENGTH 

 
 
FIGURE 3-1  Idealized Force-Displacement Relation of Typical Seismic Isolation 
System 
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Let D be the displacement of the system for an earthquake, described by a particular 
smooth response spectrum. The effective period and effective damping of the system are 
given by (1999, 2010 AASHTO, ASCE 7-10) 
 

 2eff
eff

W
T

K g
  (3-5) 

 

 d
eff d

Q
K K

D
   (3-6) 
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2eff
eff
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


 

  
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 (3-7) 

 
where E is the energy dissipated per cycle at the displacement D. For the behavior 
depicted in Figure 3-1, the energy dissipated per cycle is given by  
 
 4 ( )dE Q D Y   (3-8) 

 
where Y is the yield displacement of the system. 
 
The peak dynamic response of this system may be obtained from the response spectrum 
by assuming that the system is linear elastic with effective period effT . Based on the value 

of the effective damping eff , the damping reduction factor B is calculated. The response 

of the system (in terms of spectral displacement and spectral acceleration) is calculated as 
the response obtained for 5% damping divided by the factor B. However, since the 
calculation is based on an assumed value of displacement D, the process is repeated until 
the assumed and calculated values of displacement are equal. This procedure represents a 
simplified method of analysis that is typically used for seismically isolated structures. 
(We will later modify the method to account for the flexibility of a bridge’s substructure). 
Note that the calculated spectral acceleration represents the maximum acceleration 
because the system has hysteretic behavior. Also, note that the maximum velocity could 
not be calculated. We will address this problem later on in this section.  
 
Consider that viscous damping devices (say N in number and oriented at an angle j  with 

respect to the direction of displacement considered) are added to this system so that the 
damping force in each device is described by  
 
 | | sgn( )a

Dj NjF C V V  (3-9) 

 
where V  is the velocity and a is an exponent typically with a value less than or equal to 
one. To calculate the displacement response of the system with the damping devices one 
has to account for the effect of the damping devices on the effective damping (the 



33 
 

damping devices are purely viscous so that they do not affect the effective stiffness of the 
system).  
The effective damping is now given by  
 

 2

1

2
D

eff
eff

E E

K D



 

  
  

 (3-10) 

 
where DE  is the energy dissipated in the viscous damping devices given by  
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
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In equation (3-11), parameter  is given by  
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a
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


  (3-12) 

 
where   is the gamma function. Table 3-2 presents values of parameter . 
 
         TABLE 3-2 Values of parameter 


a 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
  4.000 3.723 3.496 3.305 3.142 3.000 2.876 2.765 2.667 

 
Analysis for calculation of the displacement and spectral acceleration is identical to the 
one described previously. However, the calculated value of acceleration is not the 
maximum acceleration. 
 
The maximum velocity of the system may be accurately calculated by  
 

 
2

eff

V D CFV
T

 
    
 

 (3-13) 

 
where CFV is a velocity correction factor given in Table 3-3. Is should be noted that 
equation (3-13) calculates the velocity as pseudo-velocity multiplied by a correction 
factor (Ramirez et al, 2001). 
 
Simplified for the general case of nonlinear viscous behavior, the isolation system shear 
is given by  
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where  

 
1

(2 )2 a
Va 



   
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 (3-15) 

 
TABLE 3-3  Velocity Correction Factor CFV 
 
Effective 
Period 
(sec) 

Effective Damping  

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.3 0.72 0.70 0.69 0.67 0.63 0.60 0.58 0.58 0.54 0.49 

0.5 0.75 0.73 0.73 0.70 0.69 0.67 0.65 0.64 0.62 0.61 

1.0 0.82 0.83 0.86 0.86 0.88 0.89 0.90 0.92 0.93 0.95 

1.5 0.95 0.98 1.00 1.04 1.05 1.09 1.12 1.14 1.17 1.20 

2.0 1.08 1.12 1.16 1.19 1.23 1.27 1.30 1.34 1.38 1.41 

2.5 1.05 1.11 1.17 1.24 1.30 1.36 1.42 1.48 1.54 1.59 

3.0 1.00 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 1.75 

3.5 1.09 1.15 1.22 1.30 1.37 1.45 1.52 1.60 1.67 1.75 

4.0 0.95 1.05 1.15 1.24 1.38 1.49 1.60 1.70 1.81 1.81 

 

In these equations, V is the portion of the effective damping contributed by the viscous 

dampers 
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For the case of linear viscous dampers ( 1a  ),  
 
 1tan (2 )V   (3-17) 

 
and  
 

 2cos
N

V j j
jeff eff

C
T K

    (3-18) 

 
In equation (3-18), jC  is the damping constant of the linear dampers. 

 
Note that the maximum acceleration is given by  
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 max
bV

a g
W

  (3-19) 

By virtue of equations (3-2) and (3-5) and using dS D , the maximum acceleration of the 

deck may be written as function of the spectral acceleration aS : 

 

  max
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aa S CFV

 


   (3-20) 

Equations (3-14) and (3-20) imply that the peak force may be calculated as the peak 
restoring force times cos  plus the peak viscous force times (sin )a . 
 
3.5 Re-centering Capability 
 
Contemporary seismic isolation systems that have been applied to buildings are 
characterized by strong restoring force capability. However, for bridge applications, two 
competing seismic isolation design strategies have been developed: (a) a strategy 
championed by engineers in New Zealand, the United States and Japan which requires 
strong restoring force in the isolation system, and (b) the Italian strategy in which the 
isolation system exhibits essentially elasto-plastic behavior. 
 
Specifications in the United States presume that the isolation system has, excluding any 
contribution from viscous devices, a bilinear hysteretic behavior characterized by the 
zero-force intercept or characteristic strength and the post-elastic stiffness. The ASCE 7-
10 Standard specifies a minimum required stiffness as follows such that the force at the 
design displacement D minus the force at half the design displacement ( / 2D ) is greater 
than 0.025W. Based on the typical behavior of isolation systems shown in Figure 3-1, the 
requirement may be expressed in the following two ways: 
 
 0.05dK D W  (3-21) 

or 
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where D is the design displacement of the isolation system and the period T calculated on 
the basis of the post-elastic stiffness 
 

 2
d

W
T

gK
  (3-23) 

 
For example, a displacement 300D  mm, which is characteristic of applications in 
California but not in close proximity to active faults, would have resulted in a 
requirement for 4.9T  sec, which has been already implemented.  
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The 1999 AASHTO Guide Specifications for Seismic Isolation Design (AASHTO, 1999) 
and its 2010 upcoming revision have a more relaxed specification for minimum restoring 
force but subject to a constraint on period T: 
 
 0.025dK D W  (3-24) 

and 
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Moreover, AASHTO and ASCE do not permit the use of systems which do not meet this 
requirement, even with severe penalties. 
 
The design strategy of requiring strong restoring force is based on the experience that 
bridge failures in earthquakes were primarily the result of excessive displacements. By 
requiring strong restoring force, cumulative permanent displacements are avoided and the 
prediction of displacement demand is accomplished with less uncertainty. By contrast, 
seismic isolation systems with low restoring force ensure that the force transmitted by the 
bearing to the substructure is predictable with some certainty. However, this is 
accomplished at the expense of uncertainty in the resulting displacements and the 
possibility for significant permanent displacements.  
 
The Eurocode 8, EN1998-2 for seismically isolated bridges (European Committee for 
Standardization, 2005) describes a different approach for ensuring sufficient re-centering 
capability. The code defines the permanent displacement RD  as the displacement at the 

intersection of the descending branch of the hysteresis loop with the zero force axis. For 
systems with bilinear hysteretic behavior the permanent displacement is given by  
 

 d
R

d

Q
D

K
  (3-26) 

 
This equation is valid when 2RD D Y  , which is the typical case. Eurocode 8 requires 

that the force at the design displacement D minus the force at half the design 
displacement ( / 2D ) is greater than0.025 /RWD D . Based on the typical behavior of 

isolation systems shown in Figure 3-1, the requirement may be expressed in the following 
two ways: 
 

 0.05dK D W   (3-27) 

 
or 
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In these equations   is the ratio of the characteristic strength to the seismic weight 
 

 dQ

W
   (3-29) 

 
It should be noted that (3-28) collapses to (3-22) of the ASCE 7-10 when 0.05  , it is 
more conservative when 0.05   and is less conservative otherwise. Note that in 
assessing the re-centering capability of isolation systems, the characteristic strength 
should be evaluated under conditions of very slow motion as those experienced just prior 
to reaching the permanent displacement. For sliding systems (see Section 5), the 
parameter   is the coefficient of sliding friction at near zero velocity or minf . Similarly, 

in lead-rubber systems (see Section 8) the characteristic strength used in (3-29) should be 
the value under quasi-static conditions, which is approximately two to three times smaller 
than the value under dynamic, high speed conditions. 
 
Equations (3-27) and (3-28) recognize the importance of the characteristic strength in 
defining the re-centering capability. As such, Eurocode 8 (European Committee for 
Standardization, 2005) provides a more rational basis for establishing sufficient re-
centering capability than either the ASCE 7-10 or the 1999 AASHTO Guide 
Specification. 
 
A recent study (Katsaras et al, 2006) funded by the European Union addressed the 
requirement for restoring force capability and proposed changes to the Eurocode.  The 
study was based on dynamic analysis of a large number of single degree of freedom 
systems with bilinear hysteretic behavior and statistical processing of results on 
displacement response, including permanent displacement and accumulated 
displacement.   The main conclusion of the study is that seismic isolation systems have 
sufficient restoring force capability (no accumulation of permanent displacements in 
sequential earthquakes and small permanent displacements) when 
 

 0.5
R

D

D
  (3-30) 

 
where parameters D and RD  have been previously defined.  It may be easily shown that 

this requirement is equivalent to  
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where all parameters have been previously defined (with   being the high velocity value 
of the normalized strength).   Interestingly, Tsopelas et al. (1994) proposed on the basis 
of observations in the shake table testing of seismic isolation systems that systems with 
sufficient restoring force capability have ratio of characteristic strength (at high velocity) 
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to peak restoring force less than or equal to 3.0.  This requirement is equivalent to 
/ 0.33RD D  , which can also be written as  
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/ 3
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 (3-32) 

 
where again   is the high velocity value of the normalized strength.  The difference 
between (3-32) and (3-31) is likely due to the fact that the tested systems of Tsopelas et 
al. (1994) did have velocity dependent strength, whereas the analyzed systems of 
Katsaras et al. (2006) did not.  Nevertheless, these studies demonstrate the validity of 
equation (3-28) but with   interpreted as the low velocity value of the normalized 
strength (about one half to one third of the high velocity value). 
 
Recommendation: 
 
It is recommended that sufficient re-centering capability is determined as follows. 
 
For all systems 
 
The force at the design displacement D minus the force at half the design displacement    
( / 2D ) is greater than 0.025 /RWD D  where RD  is the displacement at the intersection of 

the descending branch of the hysteresis loop of the entire isolation system with the zero 
force axis. The hysteresis loop should not include any contributions that are velocity or 
strain rate dependent. That is, the hysteresis loops should be obtained under quasi-static 
test conditions. 
 
For Systems with Bilinear Hysteretic Behavior 
 
For systems that have bilinear hysteretic behavior as the one idealized in Figure 3-1, 
equations (3-27), (3-28) and (3-29) may be used. Such systems include the Lead-Rubber 
and Friction Pendulum. The parameter   should be determined under quasi-static 
conditions of motion but the value should not be less than 0.5 times the value under high 
speed motion conditions. 
 
Isolation systems without sufficient re-centering capability as defined above shall be 
allowed to be analyzed only by use of the nonlinear response history analysis method. 
Moreover, the period of the isolated bridge calculated using the tangent stiffness of the 
isolation system at the design displacement should be less than 6.0 sec for any acceptable 
isolation system. Isolation systems which do not meet the 6.0 sec period criterion shall 
not be allowed.  
 
Isolation systems that do not meet the re-centering capability criteria may develop large 
permanent displacements. The Engineer may want to increase the displacement capacity 
of the isolation system to accommodate portion of these displacements beyond the 
calculated peak displacement demand in the maximum earthquake. 
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3.6 Response Modification Factor 
 
Response-modification factors (or R factors) are used to calculate the design forces in 
structural components from the elastic force demand. That is, the demand is calculated on 
the assumption of elastic structural behavior and subsequently the design forces are 
established by dividing the elastic force demand by the R factor. Illustrated in Figure 3-2 
is the structural response of a yielding system. The elastic force demand is eF , whereas 

the yield force of an idealized representation of the system is YF . The design force is DF  

so that  
 

 e
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  (3-33) 

 
where R is the response modification factor. 
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FIGURE 3-2  Structural Response of a Yielding System 
 
The response modification factor contains two components:  
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F F F       (3-34) 

 
where R  is the ductility-based portion of the factor and OR is the overstrength factor. The 

ductility-based portion is the result of inelastic action in the structural system. The 
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overstrength factor is the result of reserve strength that exists between the design strength 
and the actual yield strength of the system.  
 
When a strength design approach is followed, the design force corresponds to the level at 
which the first plastic hinge develops and the structural response deviates from linearity 
(as illustrated in Figure 3-2). In this case the overstrength factor results from structural 
redundancies, material overstrength, oversizing of members, strain hardening, strain rate 
effects and code-specified minimum requirements related to drift, detailing, etc. 
 
When an allowable stress design approach is followed, the design force corresponds to a 
level of stress which is less than the nominal yield stress of the material. Accordingly, the 
R factor (which is designated as WR ) contains an additional component which is the 

product of the ratio of the yield stress to the allowable stress and the shape factor (ratio of 
the plastic moment to moment at initiation of yield). This factor is often called the 
allowable stress factor, YR , and has a value of about 1.5. That is  

 
 W O YR R R R    (3-35) 

 
Codes and Standards (such as the 2005 ASCE), Specifications (such as the AASHTO 
Specifications for Highway Bridges) and various resource documents specify values of 
the R factor which are empirical in nature. In general, the specified factor is dependent 
only on the structural system without consideration of the other affecting factors such as 
the period, framing layout, height, ground motion characteristics, etc.  
 
The 1991 AASHTO Guide Specifications for Seismic Isolation Design (American 
Association of State Highway and Transportation Officials, 1991) specified the response 
modification factors for isolated bridges to be the same as those for non-isolated bridges. 
For substructures (piers, columns and column bents) this factor has values in the range of 
2 to 5 (American Association of State Highway and Transportation Officials 2007 LRFD 
Specifications). While not explicitly stated in the 1991 AASHTO Guide Specifications, it 
is implied that the use of the same R factors would result in comparable seismic 
performance of the substructure of isolated and non-isolated bridges. Accordingly, the 
1991 AASHTO Guide Specifications recommended the use of lower R factors when 
lower ductility demand on the substructure of the isolated bridge is desired. The 
assumption that the use of the same R factor would result in comparable substructure 
seismic performance in isolated and non-isolated bridges appeared rational. However, it 
may be demonstrated by simple analysis that when inelastic action commences in the 
substructure, the effectiveness of the isolation system diminishes and larger displacement 
demands are imposed on the substructure. 
 
One significant change in the 1999 AASHTO Guide Specifications for Seismic Isolation 
Design over the 1991 predecessor is the specification for lower R factor values for 
substructures of isolated bridges (this philosophy is maintained in the upcoming 2009 
revision of the AASHTO Guide Specifications). These values are in the range of 1.5 to 
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2.5. The following statements from the 1999 AASHTO Guide Specifications provide the 
rationale for the changes: 

Preface: 

“…The response modification factors ( R factors) have been reduced to values between 1.5 and 
2.5. This implies that the ductility-based portion of the R  factor is unity or close to unity. The 
remainder of the factor accounts for material overstrength and structural redundancies that are 
inherent in most structures. The specification of lower R factors has been based on the following 
considerations: (i) Proper performance of the isolation system, and (ii) Variability in response 
given the inherent variability in the characteristics of the design basis earthquake. 

The lower R factors ensure, on the average, essentially elastic substructure response in the design 
basis earthquake. However, they do not necessarily ensure either proper behavior of the isolation 
system or acceptable substructure performance in the maximum capable earthquake (e.g., 
described as an event with 10% probability of being exceeded in 250 years). Owners may opt to 
consider this earthquake for the design of important bridges. This approach is currently utilized for 
the design of isolated bridges by the California Department of Transportation…..” 

Section C6. Response Modification Factor: 

“…The specified R factors are in the range of 1.5 to 2.5, of which the ductility based portion is 
near unity and the remainder accounts for material overstrength and structural redundancy that are 
inherent in most structures. That is, the lower R factors ensure, on the average, essentially elastic 
substructure behavior in the design basis earthquake. It should be noted that the calculated 
response by the procedures described in this document represents an average value, which may be 
exceeded given the inherent variability in the characteristics of the design basis earthquake….” 

 
There is, thus, a clear intention in the 1999 AASHTO Guide Specifications to essentially 
eliminate inelastic action in the substructure of seismic-isolated bridges. This intention is 
not the result of desire for better performance. Rather it is a necessity for proper 
performance of the isolated bridge.  
 
Recommendation: 
 
Elements of the substructure of bridges shall be designed with an R factor of 1.0 for 
critical bridges, in the range of 1.0 to 1.25 for essential bridges and 1.5 for other bridges.  
Forces for the design of the isolators shall not be reduced by R-factors. 
 
3.7 Single Mode Method of Analysis 
 
Section 3.3 herein presented a detailed description of the single mode method of analysis. 
It is directly applicable to cases in which the bridge substructure (part below the isolators) 
is sufficiently stiff to allow for a representation of the substructure as rigid. This is not 
always valid. In those cases, the effect of the finite stiffness of the substructure is to 
lengthen the effective period and to reduce the effective damping. The 1999 AASHTO 
(American Association of State Highway and Transportation Officials, 1999), its 
upcoming 2009 revision and the Eurocode 8 (European Committee for Standardization, 
2005) provide some direction on how to incorporate the effects of the flexibility of the 
substructure in the single mode method of analysis. 
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As an example consider the model shown in Figure 3-3. It shows a bridge represented by 
a rigid deck of tributary weight W, an isolator with effective stiffness at displacement D 
equal to ISK  and a column below the isolator with horizontal stiffness CK  (stiffness 

derived for elastic behavior, assuming fixity at the base and applying a force at the 
centroidal axis of the deck. In case the column is of constant section with modulus of 
elasticity E and moment of inertia I, the stiffness is given 

by
12 3( ) / 2 / 3CK L h L EI L EI


     ). The foundation is represented with horizontal 

stiffness FK and rotational stiffness RK . Inertia effects in the substructure are neglected. 

This model would be representative of the behavior of a long bridge with identical piers 
and isolators at each pier. The extension of this model to the case of a bridge with piers of 
variable properties is straightforward. 
 

FIGURE 3-3  Seismically Isolated Bridge with a Flexible Substructure and its 
Deformation under Lateral Force 
 
An inertia force F acts at the centroidal axis of the deck. The deck undergoes a total 
displacement equal to DECKD . The effective stiffness of this system is  
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The components of displacement (see Figure 3-3 for definitions) are given by  
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The effective period of the isolated bridge is given by  
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The effective damping is given by 
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The energy dissipated per cycle E may be calculated using equation (3-8) when damping 
in the column and foundation is neglected (conservative) and the isolator behavior is as 
shown in Figure 3-1. 
 
The total displacement of the deck DECKD  can be directly obtained as the spectral 

displacement from the response spectrum for period effT
 
upon division by the damping 

reduction factor appropriate for damping eff . The isolator displacement D is then 

calculated from 
 

 eff
DECK
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K
D D

K
  (3-40) 

 
Analysis by the single mode method should be independently performed in two 
orthogonal directions and the results be combined using the 100%-30% combination 
rule. The two orthogonal directions may be any two arbitrary perpendicular directions 
that facilitate the analysis. Most convenient is the use of the longitudinal and transverse 
bridge directions. For curved bridges, the longitudinal axis may be taken as the chord 
connecting the two abutments. The vertical ground acceleration effect may be included at 
the discretion of the Engineer and using rational methods of analysis, and combined using 
the 100%-30%-30% rule. The procedure is demonstrated through examples in this 
document. 
 
The effect of the substructure flexibility is to cause an increase in the total deck 
displacement and most often to cause a decrease in the bearing displacement demand. In 
general, this effect may be neglected if the ratio of the effective period of the isolated 
bridge with the substructure flexibility effect included to the effective period of the 
isolated bridge with the substructure flexibility effect excluded is less than 1.10. 
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3.8 Multimode Method of Analysis 
 
The multimode method of analysis is typically implemented in a computer program 
capable of performing response spectrum analysis. Each isolator is represented by its 
effective horizontal stiffness that is calculated on the basis of the single mode method of 
analysis. The response spectrum specified for the analysis is the 5 percent damped 
spectrum modified for the effects of the higher damping. The ordinates of the 5 percent 
damped response spectrum for values of period larger than 0.8 effT

 
are divided by the 

damping reduction factor B for the effective damping of the isolated bridge. In this 
approach only the isolated modes of the structure are allowed the reduction of response 
due to increased damping, whereas the higher modes are assumed to be damped at 5 
percent. Note that the modification of the spectrum for higher damping requires that the 
effective period and effective damping in each principal direction be calculated. This is 
done by use of the single mode analysis method. 
 
Figure 3-4 below presents the response spectrum used in multimode analysis of a 
seismically isolated bridge. The effective period is 2.75effT  sec, the effective damping 

is 0.3eff   and the damping reduction factor B=1.8. The ordinates of the 5 percent 

damped spectrum for period larger than 2.2 sec were divided by a factor of 1.8.  
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FIGURE 3-4  Response Spectrum for Multimode Analysis of a Seismically Isolated 
Bridge 
 
Analysis by the multimode method should be independently performed in the two 
horizontal orthogonal directions and the results be combined using the 100%-30% 
combination rule. The two horizontal orthogonal directions may be any two arbitrary 
perpendicular directions that facilitate the analysis. Most convenient is the use of the 
longitudinal and transverse bridge directions. For curved bridges, the longitudinal axis 
may be taken as the chord connecting the two abutments. The vertical ground 
acceleration effect may be included at the discretion of the Engineer and using rational 
methods of analysis. 
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3.9 Response History Analysis Method 
 
The response history analysis method incorporating nonlinear representations of the 
isolators is the most accurate method of analysis. The method should be used with 
explicit nonlinear representation of the characteristics of each isolator. Computer 
programs capable of such analysis are the public domain 3D-BASIS class of programs 
(Tsopelas, 2005 for the latest version), and the commercially available programs 
SAP2000, ANSYS and ABAQUS (CSI, 2002; Swanson Analysis Systems, 1996; Hibbitt, 
Karlsson and Sorensen, 2004). For examples of analysis of isolated structures using 
programs ANSYS and ABAQUS the interested reader is referred to Roussis et al (2003), 
Clarke et al (2005) and Tsopelas et al (2005). 
 
When response history analysis is performed, a suite of not fewer than seven appropriate 
ground motions shall be used in the analysis and the ground motions shall be selected and 
scaled in accordance with the criteria listed below. The maximum displacement of the 
isolation system shall be calculated from the vectorial sum of the two orthogonal 
displacement components at each time step. 

For each ground motion analyzed, the parameters of interest shall be calculated. The 
average value of the response parameter of interest shall be permitted to be used for 
design.  

Ground motions shall consist of pairs of appropriate horizontal ground motion 
acceleration components that shall be selected and scaled from individual recorded events 
to meet the following minimum requirements. Appropriate ground motions shall be 
selected from events having magnitudes, fault distance, and source mechanisms that are 
consistent with those that control the considered earthquake. For each pair of scaled 
horizontal ground motion components, an SRSS (square root of sum of squares) spectrum 
shall be constructed by taking the square root of the sum of the squares of the five-
percent-damped response spectra for the scaled components (where an identical scale 
factor is applied to both components of a pair). Each pair of motions shall be scaled such 
that for each period between 0.5 effT  and 1.25 effT (as calculated by equation 3-5) the 

average of the SRSS spectra from all horizontal component pairs does not fall below 1.3 
times the corresponding ordinate of the response spectrum by more than 10 percent. 

At the discretion of the Engineer, vertical ground motion histories may be included in the 
dynamic analysis provided that the vertical motions are rationally selected and scaled, the 
analysis method is accurate and the results are independently verified. Consideration of 
the vertical ground motion effects may be necessary when assessing bearing uplift or 
tension. 
 
3.10 Use of Methods of Analysis 
 
This section delineates the requirements for the use of the single mode method of 
analysis, the multimode method of analysis and the response history method of analysis. 
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Table 3-4 presents a summary of applicability criteria for each method of analysis. Note 
that isolation systems must meet the re-centering capability requirements of Section 3.5 
for single and multimode methods of analysis to be used. Site class is as defined in the 
Recommended LRFD Guidelines for the Seismic design of Highway Bridges (Imbsen, 
2006). The response history method of analysis is required when these requirements are 
not met. Nevertheless, all seismic isolation systems should have a period calculated using 
the tangent stiffness of the isolation system at the design displacement less than 6.0 sec. 
 
TABLE 3-4 Applicability Criteria for Methods of Analysis 

Method of Analysis Applicability Criteria 

Single Mode 

1. Site Class A, B, C or D. 
2. Bridge without significant curvature, defined as having a 

subtended angle in plan not more than 30°. 
3. Effective period 3.0seceffT  . 

4. Effective damping 0.30eff  . Method may be used 

when 0.30eff  but less than 0.50 provided that 

0.30eff  is used. 

5. Distance from active fault is more than 10km. 
6. The isolation system does not limit maximum 

displacement to less than the calculated demand. 
7. The isolation system meets the re-centering capability 

criteria of Section 3.4. 

Multimode 

1. Site Class A, B, C or D. 
2. Bridge of any configuration. 
3. Effective period 3.0seceffT  . 

4. Effective damping 0.30eff  . Method may be used 

when 0.30eff  but less than 0.50 provided that 

0.30eff  is used. 

5. Distance from active fault>10km. 
6. The isolation system does not limit maximum 

displacement to less than the calculated demand. 
7. The isolation system meets the re-centering capability 

criteria of Section 3.4. 

Response History 

1. Applicable in all cases. 
2. Required when distance to active fault is less than 10km. 
3. Required when Site Class is E or F. 
4. Required when 3.0seceffT   or 0.50eff  . 

5. Required when the isolation system does not meet the 
re-centering capability criteria of Section 3.4, but it 
meets the criterion that the period calculated using the 
tangent stiffness of the isolation system at the design 
displacement is less than 6.0sec. 



47 
 

Lower-bound limits on isolation system displacements and forces are specified in Table 
3-5 as a percentage of the values prescribed by the single mode method design formulas, 
even when multimode or response history analysis methods are used as the basis for 
design. These lower-bound limits on key design parameters ensure consistency in the 
design of isolated bridges and serve as a “safety net” against gross under-design. 
 
 
TABLE 3-5  Lower-Bound Limits on Multimode and Response History Analysis 
Methods Specified in Relation to Single Mode Method Requirement 
 

Design Parameter Single Mode Method 
Multimode 

Method 

Response 
History 
Method 

Displacement in Design or 
Maximum Earthquake –

DD or MD  

Calculated using response 
spectrum for period effT and 

dividing by damping 
reduction factor B for 
calculated value of eff per 

Sections 3.2 and 3.3. 

0.9 DD or 

0.9 MD  

0.9 DD or 

0.9 MD  

Total maximum 
displacement- TMD  

(displacement in maximum 
earthquake including effects 
of torsion in the isolated 
bridge) 

Calculated by rational 
methods but subject to DTM 
  1.1DM 

  0.8DTM   0.8DTM 

Shear Force- bV  

(at or below the isolation 
system) 

Given by equation (3-14) 
for Design or Maximum 
Earthquake 

  0.9Vb   0.9Vb 
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SECTION 4 
MECHANICAL PROPERTIES OF ISOLATORS 

 
4.1 Introduction 
 
Analysis of seismically isolated bridges should be performed for the Design Earthquake 
(DE) for two distinct sets of mechanical properties of the isolation system: 
 

a) Upper bound properties that are defined to be the upper bound values of 
characteristic strength and post-elastic stiffness that can occur during the lifetime 
of the isolators and considering the effects of aging, contamination, temperature 
and history of loading and movement. Typically, the upper bound values describe 
the behavior of aged and contaminated bearings, following movement that is 
characteristic of substantial traffic loading, when temperature is low and during 
the first high speed cycle of seismic motion. The upper bound values of properties 
usually result in the largest force demand on the substructure elements. 
 

b) Lower bound properties that are defined to be the lower bound values of 
characteristic strength and post-elastic stiffness that can occur during the lifetime 
of the isolators. Typically, the lower bound values describe the behavior of fresh 
bearings, at normal temperature and following the initial cycle of high speed 
motion. The lower bound values of properties usually result in the largest 
displacement demand on the isolators. 

 
The upper and lower bound values of mechanical properties are determined from nominal 
values of properties and the use of system property modification factors. The nominal 
properties are obtained either from testing of prototype bearings identical to the actual 
bearings or from test data of similar bearings from previous projects and the use of 
appropriate assumptions to account for uncertainty. Typically, the analysis and design of 
the isolated bridge is based on available data from past tests of similar bearings. The 
assumptions made for the range of mechanical properties of the isolators are then 
confirmed in the prototype testing that follows. If the selection of the range of mechanical 
properties is properly made, the prototype bearing testing will confirm the validity of the 
assumptions and therefore the validity of the analysis and design. Accordingly, 
modifications of the design would not be necessary.  
 
The Engineer should consult with manufacturers of isolators for information on the 
behavior of their products. Results of testing of similar bearings under similar conditions 
of loading and motion could serve as a guide in selecting the nominal mechanical 
properties of the isolators. The information provided in this section is based on the test 
data presented in Constantinou et al (2007a) and it applies to specific materials and 
conditions of operation.  The information cannot be assumed to apply for all materials 
used in seismic isolators.  However, the information provided in this section, together 
with information provided in the appendices related to the example bridge of Section 10, 
serve as a guide to estimating upper and lower bound values of isolator properties for 
lead-rubber and friction pendulum isolators.  Note that the approach followed in this 
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section and in the aforementioned examples is to conservatively estimate the range of 
properties.  A narrower range of properties may be used when test data for the actual 
bearings are available.  This statement suggests that conducting the prototype bearing 
testing early in the design and analysis process is desirable. 
 
4.2 Nominal Properties of Lead-Rubber Bearings 
 
A lead-rubber bearing consists of an elastomeric bearing (a construction of alternating 
bonded layers of natural rubber and steel reinforcing shims) with a central core of lead 
(see Constantinou et al-2007a for details). Figure 4-1 shows a lead-rubber bearing that 
was cut to reveal its internal construction. Note that the top and bottom (flange) plates of 
the bearing are connected to the end plates of the rubber bearing through countersunk 
bolts. This type of construction allows for confinement of the lead plug at the core of the 
bearing. The plug is typically cut longer than the height of the rubber bearing (by an 
amount less than 5%) so the core is compressed upon bolting the flange plates to the end 
plates. The lead core expands laterally and wedges into the rubber layers between the 
shim plates. Under such (confined) conditions, the lead core provides excellent energy 
dissipation capacity (with a magnitude dependent on the diameter of the lead plug or 
cylinder). 
 

 
 
FIGURE 4-1  Internal Construction of a Lead-Rubber Bearing (Courtesy of DIS) 
 
Lead-rubber bearings have a lateral force-lateral displacement behavior that can be 
idealized by the bilinear hysteretic loop shown in Figure 3-1. The mechanical behavior of 
the bearing is characterized by the following parameters: 
 

a) Characteristic Strength dQ . The characteristic strength is related to the area of lead 

LA  and the effective yield stress of lead L  as follows: 
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 d L LQ A   (4-1) 

 
The characteristic strength of lead is a mechanical property that depends on a 
variety of parameters, including axial load on the bearing, amplitude of motion, 
size of lead core, and bearing manufacturing details. Moreover, the value of the 
effective yield stress varies from cycle to cycle as a result of heating of the lead 
core. While it is possible to calculate the change of values of this property due to 
heating using the theory presented in Constantinou et al (2007a) and Kalpakidis 
and Constantinou (2009a,b), most engineers are unfamiliar with such calculations. 
A representative range of values is proposed in this document based on available 
experimental results. It should be noted that in these results the contributions to 
the characteristic strength from lead and rubber are lumped together in order to 
facilitate calculations.  

 
The nominal values of parameter L are: 

 
 Value valid during first cycle of seismic motion, 

1L , and assumed to be 

given by 
1 3

1.35L L   

 Value determined as the average characteristic strength in the first three 
cycles of seismic motion, 

3L . Values of 
3L  are in the range of 1.45 to 

1.75ksi (10 to 12MPa), depending on the size of the lead core, size of 
bearing, loading and manufacturing details, and due to uncertainty. It is 
appropriate to assume 

3L equal to 1.45ksi and 
1

1.35 1.75 2.36L    ksi. 

These values are consistent with behavior observed in high velocity, large 
amplitude testing of lead-rubber bearings 

 For calculations for traffic loading conditions, 
1
/ 2

TRL L   

 For calculations for thermal loading conditions, 
1
/ 3

THL L   

 
b) Post-elastic Stiffness dK . The stiffness is related to the shear modulus of rubber 

G , the bonded rubber area A , and the total rubber thickness rT :  

 d
r

GA
K

T
  (4-2) 

It is recommended that for calculating area A  in (4-2), the bonded rubber radius is 
increased by half the rubber cover thickness in order to account for the effect of 
rubber cover on stiffness. The shear modulus of rubber depends on the rubber 
compound, the conditions of loading and the amplitude and frequency of motion. 
Values of the shear modulus G  to use in (4-2) will be related in this report to the 

average value of the shear modulus in three cycles of motion 3cG , which is in the 

range of 65 to 125psi (0.45 to 0.85MPa) for typical seismic isolation applications. 
It is assumed in this report that the rubber is of the low damping type and that 
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scragging effects are small, which is generally true for rubber with the range of 
shear modulus values listed above. The recommended values of shear modulus 
(including any scragging effects) are: 
 

 Value valid during the first cycle in seismic motion, 1cG , and assumed to 

be given by 1 31.10c cG G . The largest value of 3cG within the nominal 

range should be used in calculating 1cG  

 Value determined as the average shear modulus during the first three 
cycles of seismic motion, 3cG . The range of values of parameters used in 

this document is valid for low damping natural rubber with 3cG  larger 

than 65psi (0.45MPa).  The actual value of 3cG  should be assumed to be 

within a range, say 5%  of a mean value when supporting experimental 
evidence exists or larger range otherwise 

 For calculations for traffic and thermal loading conditions, 30.8 cG G . 

The largest value of 3cG  should be used in calculating G  

 
c) Yield displacement Y. This parameter is useful in calculating the effective 

damping (equation 3-8) and in modeling isolators for dynamic response history 
analysis.  It should be determined from the force-displacement loops of the actual 
bearing.  In the absence of such information, it may be assumed to be in the range 
of 0.25 to 1inch (6 to 25mm). 

 
4.3 Upper and Lower Bound Properties of Lead-Rubber Bearings 
 
The lower bound values of characteristic strength and post-elastic stiffness of lead-rubber 
bearings should be the nominal properties during the first three cycles (average of three 
cycles) of seismic motion listed in Section 4.2. Note that these properties are for normal 
temperature and for fresh bearings. 
 
The upper bound values of characteristic strength and post-elastic stiffness of lead-rubber 
bearings should be the nominal properties during the first cycle of seismic motion listed 
in Section 4.2 and multiplied by the system property modification factor for the combined 
effects of aging and low temperature. These factors are listed in AASHTO Guide 
Specifications for Seismic Isolation Design (2010) and in more detail in Constantinou et 
al (2007a). 
 
4.4 Basic Behavior of Single and Double Friction Pendulum Bearings 
 
Friction Pendulum (FP) bearings come in Single, Double or Triple configurations.  Figure 
4-2 shows sections of Single and Double FP bearings.  While Double FP may be 
designed with the two sliding interfaces having different geometric and frictional 
properties (e.g., see Fenz and Constantinou, 2006), application of such behavior in 
bridges does not offer any important advantage while it complicates analysis.  That is, 
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based on the schematic of Figure 4-2, typical Double FP bearings have R1=R2, d1=d2 and 
µ1=µ2=µ. 
 
Note that the Single FP bearing in Figure 4-2 is shown with the pivot point located 
outside the boundary of the concave sliding surface.  It is also possible to have the pivot 
point located inside the boundary of the concave surface.  The former case is common in 
bearings with squatty articulated slider and is typical of large FP bearings. 
 

 
FIGURE 4-2 Cross Sections of Single and Double Friction Pendulum Bearings and 
Definition of Dimensional and Frictional Properties 
 
Single and Double Friction Pendulum (FP) bearings exhibit a behavior as shown in 
Figure 3-1 but with a very small yield displacement Y. Values of the yield displacement 
are only useful in modeling the bearing for dynamic response history analysis. For such 
purposes, values of Y of the order of 1 to 2 mm (0.04 to 0.08 inch) are appropriate. 
 
The post-elastic stiffness of FP bearings is entirely dependent on the axial load W  on the 
bearing and on the effective radius of curvature of the concave plate, eR : 

 d
e

W
K

R
  (4-3) 

For Single FP bearings as shown in Figure 4-2 (pivot point outside the boundary of 
concave surface), the effective radius is given by (Fenz and Constantinou, 2008c): 
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 eR R h   (4-4) 

 
The actual displacement capacity d* of the Single FP bearing with the pivot point lying 
outside the boundary of the concave surface (as shown in Figure 4-2) is given by: 
 

 
* eR R h

d d
R R

d


  (4-5) 

    In equation (4-5), d is the nominal displacement capacity (see Figure 4-2).  The actual 
displacement capacity is larger than the nominal capacity. 
 
When the pivot point lies inside the boundary of the concave surface of Single FP 
bearings, the effective radius is given by: 
 

eR R h           (4-6) 

 
Also when the pivot point lies inside the boundary of the concave surface, the actual 
displacement capacity d* is given by  
 

* eR R h
d d

R R
d

      
   

              (4-7) 

Therefore the actual displacement capacity is less than the nominal displacement 
capacity.  The reader will better appreciate these details in the example of Single FP 
design of Section 13 and Appendix E. 
 
For Double FP bearings with typical characteristics of R1=R2, d1=d2 and µ1=µ2=µ, the 
effective radius is given by  
 

1 2 1 2 1 1 22eR R R h h R h h                 (4-8) 

 
The actual displacement capacity d* is given by  
 

 
1 1 2

1 2 1 2
1 2 1

* 2
( ) ( )

2
eR R h h

d d d d
R R R

d
 

  


       (4-9) 

 
In equation (4-9), d1 and d2 are the nominal displacement capacities as shown in Figure 4-
2.  Note that for Double FP bearings the actual displacement capacity is always less than 
the nominal displacement capacity. 
 
The characteristic strength of Single and Double FP bearings is equal to the coefficient of 
friction   times the axial loadW : 

 dQ W   (4-10) 
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4.5 Basic Behavior of Triple Friction Pendulum Bearings 
 
The reader is referred to Fenz and Constantinou (2008a, b, c, d and e) and Morgan (2007) 
for a comprehensive description of the behavior of Triple FP bearings.  This section 
provides a basic description of the behavior of the Triple FP bearing in order to allow the 
reader to follow the example of Section 11 and Appendix C. 
 
The Triple Friction Pendulum (FP) isolator exhibits multiple changes in stiffness and 
strength with increasing amplitude of displacement. The construction of the force-
displacement loop is complex as it may contain several transition points which depend on 
the geometric and frictional properties.  Its behavior is characterized by radii R1, R2, R3 
and R4 (typically R1=R4 and R2=R3), heights h1, h2, h3 and h4 (typically h1=h4 and h2=h3), 
distances (related to displacement capacities) d1, d2, d3 and d4 (typically d2=d3 and d1=d4) 
and friction coefficients 1 , 2 , 3 and 4 (typically 2 = 3 , and for most applications 

1 = 4 ).  The actual displacement capacities of each sliding interface are given by: 

 

 * , 1...4effi
i i

i

R
d d i

R
   (4-11) 

Quantity effiR  is the effective radius for surface i given by:  

 
 , 1...4i ieffiR R h i     (4-12) 

 

  
 

FIGURE 4-3 Cross Section of Triple Friction Pendulum Bearing and Definition of 
Dimensional and Frictional Properties 

 
The lateral force-displacement relation of the Triple FP isolator is illustrated in Figure 4-
4.  Five different loops are shown in Figure 4-4, each one valid in one of five different 
regimes of displacement.  The parameters in the loops relate to the geometry of the 
bearing, the friction coefficient values and the gravity load W carried by the isolator as 
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described in Fenz and Constantinou (2008a to 2008e).  Triple FP isolators are typically 
designed to operate in regimes I to IV, whereas regime V is reserved to act as a 
displacement restrainer.  In regime V the isolator has consumed its displacement 
capacities d1 and d4 and only slides on surfaces 2 and 3 (see Figure 4-3). 

 
FIGURE 4-4 Force-Displacement Loops of Triple FP Bearing 

 
Table 4-1 (adopted from Fenz and Constantinou, 2008c) presents a summary of the force-
displacement relationships of the Triple FP bearing in the five regimes of operation.  

Note that in this table, ifiF W is the friction force at interface i and W is the axial 

compressive load on the bearing. 
 
Consider the special case in which 41 effeff RR  , 32 effeff RR  , *

4
*

1 dd  , *
4

*
2 dd  , 41    

and 32   . Furthermore, consider that the bearing does not reach regime V.  The result 

is an isolator with tri-linear hysteretic behavior as illustrated in Figure 4-5.  Note this 
special case represents a typical case of configuration of Triple FP isolators.  The 
behavior shown in Figure 4-5 is valid up to a displacement given by 
 

 
* * *

1 11 2 22 2( ) 2effdu u R d        (4-13)  

 
Also, the force at zero displacement is given by  
 
 
 
 
 

u

F 
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TABLE 4-1  Summary of Triple FP Bearing Behavior (Nomenclature Refers to Figure 4-3) 
 
Regime Description Force-Displacement Relationship 

I 
Sliding on 
surfaces 2 
and 3 only 

2 2 3 3

2 3 2 3

f eff f eff

eff eff eff eff

F R F RW
F u

R R R R


 

 
 

Valid 
until: 1fF F ,      1 2 2 1 3 3eff effu u R R        

II 

Motion 
stops on 
surface 2; 
Sliding on 
surfaces 1 
and 3 

 

Valid 
until: 4fF F ,     4 1 1 3eff effu u u R R        

III 

Motion is 
stopped on 
surfaces 2 
and 3; 
Sliding on 
surfaces 1 
and 4 

   
1 4

1 1 2 2 2 3 3 4 4 3

1 4

eff eff

f eff eff f eff f eff f eff eff

eff eff

W
F u

R R

F R R F R F R F R R

R R

 


    



 

Valid 
until: 

*
1 1 1

1
dr f

eff

W
F F d F

R
   ,   

   4*
1 1 4 1 1 4

1

1 eff
dr eff eff

eff

R
u u u d R R

R
  

         
 

 

IV 

Slider 
contacts 
restrainer on 
surface 1; 
Motion 
remains 
stopped on 
surface 3; 
Sliding on 
surfaces 2 
and 4 

  *
1 1 1

2 4 1
dr f

eff eff eff

W W
F u u d F

R R R
   


 

Valid 
until: 

*
4 4 4

4
dr f

eff

W
F F d F

R
   ,   

 
* *
4 1

4 1 4 1 2 4
4 1

dr dr eff eff
eff eff

d d
u u u R R

R R

    
                  

V 

Slider bears 
on restrainer 
of surface 1 
and 4; 
Sliding on 
surfaces 2 
and 3 

  *
4 4 4

2 3 4
dr f

eff eff eff

W W
F u u d F

R R R
   


 

Assumptions:   (1) 1 4 2 3eff eff eff effR R R R  , (2) 2 3 1 4       , (3)  *
1 4 1 1effd R   ,  

(4)  *
2 1 2 2effd R   , (5)  *

3 4 3 3effd R    
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1 1 2
2

1

( ) eff

eff

W
R

W
R

  
 

  
  

    (4-14) 

 
Two models have been developed and verified for the representation of triple FP isolators 
in computer analysis.  These models are termed the “series model” and the “parallel 
model”. 
 
 

μW
μ1W

μ2W

u*=2(μ1-μ2)Reff2 Displacement

Force

W/2Reff1

2u*

W/2Reff2

2μ2W

 
FIGURE 4-5 Force-Displacement Loop of Special Triple FP Isolator  
 
The series model has been developed by Fenz and Constantinou (2008d, e) in order to 
model behavior of the Triple FP bearings in all five regimes of operations. The series 
model, although unable to provide information on the motion of the internal components, 
is an exact representation of the triple FP bearing which indeed behaves as a series 
arrangement of single FP elements. However, the series model requires the use of a large 
number of degrees of freedom per bearing and is difficult to implement. 
 
The parallel model is a much simpler model capable of describing the behavior of the 
special case Triple FP bearing, for which 41 effeff RR  , 32 effeff RR  , *

4
*

1 dd  , *
4

*
2 dd  , 

41   , 32   and the bearing does not enter the final regime of operation (stiffening).  

The parallel model was originally described in Sarlis et al (2009) and in more detail in 
Sarlis and Constantinou (2010).  The latter document also describes an approximate way 
of modeling the behavior of the bearing in regime V when using the parallel model.       

F

u 
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4.6 Nominal Properties of Friction Pendulum Bearings 
 
The Engineer should contact manufacturers of FP bearings for information on available 
radii of curvature and diameters of concave plates. Table 4-2 presents information on FP 
bearing concave plates that have been already produced and used in bridge and other 
projects. It should be noted that these concave plates could either be used in single FP 
configurations or could be combined in double and triple FP configurations. The effective 
radius of curvature is (a) equal to the actual radius of curvature plus or minus a portion of 
the height of the articulated slider for single FP bearings, and (b) equal to the sum of the 
actual radii of curvature of the two concave plates minus the height of the slider for 
double FP bearings. Sliders have been produced with diameters ranging from 152mm (6 
inch) to 1651mm (65 inch). The slider and concave plate diameter are selected to provide 
the desired displacement capacity. For economy, the displacement capacity of FP 
bearings should be not more than about 20% of the effective radius of curvature. 
 
The nominal coefficient of friction is defined as the range of values of the coefficient for 
normal temperature and without any effects for aging, contamination and history of 
loading, that is, for a fresh bearing at normal temperature. Nominal values of the 
coefficient of friction depend on the average bearing pressure (axial load divided by 
contact area of slider), the condition of the sliding interface and the size of the slider. 
Sliders with diameter between 150mm (6 inch) and 1650mm (65inch) have been used in 
FP bearings. Considering un-lubricated conditions, the following range of values of the 
coefficient of friction is recommended for use in analysis: 

 
 Value valid during the first cycle of seismic motion, 1c , and assumed equal to 

1 31.2c c  , where 3c should be assigned the largest value within the nominal 

value range (note that 3c  is defined below). 

 Value determined as the average coefficient of friction during the first three 
cycles of seismic motion, 3c . There is uncertainty in the nominal values of 3c  

so the Engineer must make some assumptions on the range of values. 
 When experimental results are available on similar bearings and conditions of 

loading to the actual ones, the range of 3c values may be made narrower. In the 

absence of data, the Engineer may want to exercise conservatism and assume a 
wider range of values in order to ensure that properties measured in the 
production bearing testing are within the limits assumed in the analysis and 
design. 
 

For example, experimental data from large size FP bearings (contact of diameter equal to 
11inch or 279mm) and tested at amplitudes of 12 to 28inch (300 to 700mm) have been 
used to approximate the nominal values of the friction coefficient 3c  in the range of 

pressure p of 2 to 8ksi (13.8 to 62MPa) with the following equation, where p  is in units 
of ksi (see Constantinou et al, 2007a, 2007b): 
 
 3 0.122 0.01c p    (4-15)
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TABLE 4-2  Partial List of Standard Sizes of FP Bearing Concave Plates 

Radius of Curvature, mm (inch) Diameter of Concave Surface, mm (inch)

1555 (61) 

356 (14) 
457 (18) 
559 (22) 
787 (31) 
914 (36) 

2235 (88) 

686 (27) 
787 (31) 
914 (36) 
991 (39) 
1041 (41) 
1118 (44) 
1168 (46) 
1295 (51) 
1422 (56) 

3048 (120) 
686 (27) 
1422 (56) 

3962 (156) 

1600 (63) 
1778 (70) 
2692 (106) 
3150 (124) 

6045 (238) 

1981 (78) 
2388 (94) 
2692 (106) 
3327 (131) 
3632 (143) 

 
For calculations for traffic and thermal loading conditions, 3 / 2TR c  , where 3c should 

be assigned the largest value within the nominal value range. Other values of the 
coefficient of friction for traffic and thermal loading analysis may be used if experimental 
data are available on similar bearings and load conditions and for velocity of the order of 
1mm/sec.  It should be noted that equation (4-15) provides estimates of friction 
coefficients under moderate velocity conditions for which frictional heating does not 
have significant effects on the friction coefficient value.  Values of friction coefficient 

3c  for large size bearings and velocity of the order of 1m/sec are lower than those 

predicted by (4-15) by amounts of about 0.01 to 0.02.  Analysis of FP seismic isolation 
systems presented in Appendices C and E provides examples of how the frictional 
properties may be selected and adjusted to account for effects of heating, uncertainty, 
aging etc. 
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4.7 Upper and Lower Bound Properties of FP Bearings 
 
The lower bound values of characteristic strength of FP bearings should be calculated 
using the lowest nominal value of the coefficient of friction during the first three cycles 
(average of three cycles) of seismic motion listed in Section 4.6 Note that these properties 
are for normal temperature and for fresh bearings. 
 
The upper bound values of characteristic strength of FP bearings should be calculated 
using the nominal value of the coefficient of friction during the first cycle of seismic 
motion listed in Section 4.6and multiplied by the system property modification factor for 
the combined effects of aging, contamination and low temperature. These factors are 
listed in AASHTO Guide Specifications for Seismic Isolation Design (2010) and in more 
detail in Constantinou et al (2007a). 
 
4.8 Example 
 
Consider the basic properties of a lead-rubber bearing.  Let the desired nominal value of 
the shear modulus under seismic conditions be 65psi.  Most likely the bearing will have a 
value of shear modulus in the range of 60 to 70psi.  This is the range of values for the 
average shear modulus in three cycles of seismic motion.  That is, 3 60 70cG psi  . The 

value of the shear modulus valid in the first cycle of seismic motion is 

1 31.1 1.1 70 77c cG G psi    .  Note the use of the upper bound value (70psi) for 3cG  

in the range of 60 to 70psi for conservatism.  Therefore, the value of the shear modulus 
for a fresh bearing under normal temperature for use in dynamic analysis should be 
assumed in the range of 60 to 77psi.  Further adjustments (increases) of the 77psi value 
for the effects of travel, low temperature and aging are needed for conducting upper 
bound analysis. 
 
The average value of the effective yield stress of lead in three cycles of seismic 
conditions 

3L is, generally, in the range of 1.45 to 1.75ksi.  There is no single value that 

is valid for the range of conditions the bearing operates.  The value of the stress in the 
first cycle of motion is

1 3
1.35 1.35 1.75 2.36L L ksi     . Note again the conservative 

use of the upper bound value.  Therefore, the value of the lead effective shear stress for a 
fresh bearing under normal temperature for use in dynamic analysis should be assumed in 
the range of 1.45 to 2.36ksi.  Further adjustments (increases) of the 2.36ksi value for the 
effects of travel and low temperature are needed for conducting upper bound analysis. 
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SECTION 5 
ELASTOMERIC SEISMIC ISOLATION BEARING ADEQUACY ASSESSMENT 
 
5.1  Introduction 
 
This section presents a formulation for the assessment of adequacy of elastomeric seismic 
isolation bearings in bridges.  It is assumed that bearings have end, or internal, plates that 
are either bolted to top and bottom mounting plates (most common case) or are dowelled 
or kept by recessed plates. Also, it is assumed that the bearings are made of natural 
rubber. Figure 5-1 shows the internal construction of a bearing.  In this figure, the top and 

bottom mounting plates have thicknesses tpt
 
and bpt , respectively, and internal plate 

thickness ipt .  Reinforcing shims have thickness it .  There are N elastomeric layers, each 

of thickness t. 

 
FIGURE 5-1 Internal Construction of Elastomeric Bearing  
 
Note that in Figure 5-1 the bearing is shown circular but it could be square or rectangular.  
Figure 5-2 shows various shapes and dimensions of single rubber layers (bounded by 
internal reinforcing shims) of bearings considered in this work.  Note that the dimensions 
shown are the bonded dimensions-they do not include the thickness of any rubber cover. 
Dimension t is the thickness of an individual rubber layer.  Rectangular bearings have 
dimension B larger than dimension L.   
 
Elastomeric bearings are considered subjected to combined compression by load P, 
rotation by moment M causing angle of rotation  (for rectangular bearings the angle is 
about the longitudinal axis-parallel to dimension B) and lateral deformation . 
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FIGURE 5-2 Shapes and Dimensions of Single Rubber Layers 
 
For the geometries shown in Figure 5-2, the shape factor S, used in the calculation of 
rubber strains, is given by the following equations: 
 

Rectangular bearing 

 2( )

BL
S

B L t


   (5-1) 
 

Square bearing 

 
4

B
S

t
   (5-2) 

 
Circular bearing 

 
4

D
S

t
   (5-3) 

Circular hollow bearing 

 
4

o iD D
S

t


   (5-4) 

 
The assessment of adequacy of elastomeric bearings is based on the: 
 

1) Calculations of shear strains due to factored loads and displacement effects in the 
elastomer and comparison to acceptable limits. 
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2) Calculation of buckling loads and comparison to factored loads. 

 
3) Calculation of ultimate bearing displacement capacities and comparison to 

displacement demands. 
 

4) Calculations of stresses in reinforcing shim plates due to factored loads. 
 

5) Calculations of capacity of end plates when subjected to factored loads and lateral 
displacements. 
 

5.2 Calculation of Shear Strains 
 
The calculation of shear strains is based on the results presented in Appendix A for the 
effects of compression and rotation.  The appendix presents the background on the 
theories these results are based on and provides verification of their accuracy. 
 
Shear strains are calculated due to the effects of compression by load P, bearing top 
rotation by angle θ and lateral displacement Δ.  Shear strains for each of these effects are 
calculated for the locations at which they are maxima.  Figure 5-3 illustrates these 
locations.  In the equations that follow, S is the shape factor defined above, G is the 
rubber shear modulus, A is the bonded rubber area (the area may be reduced for the 
effects of lateral displacement as required), L is the plan dimension perpendicular to the 
axis of rotation (L for rectangular or square bearings, D for circular bearings and Do for 
hollow circular bearings), t is the single rubber layer thickness and Tr is the total rubber 
thickness. 
 
For compression of bearings by load P, the maximum shear strain is given by: 

 1c

P
f

AGS
     (5-5) 

 
For rotation of bearings by angle θ at the top by comparison to the bottom, the maximum 
shear strain is given by: 

 
2

2r
r

L
f

tT

     (5-6) 

For lateral deformation by displacement Δ of the top by comparison to the bottom, the 
maximum shear strain is given by: 

 s
rT

 
  (5-7) 

The factors f1 and f2 in equations (5-5) and (5-6) account for bearing shape, effect of 
rubber compressibility and the location of the point where the strain is calculated.  Values 
for these factors are tabulated and presented graphically in Appendix A. Tables 5-1 to 5-
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14 present numerical values for these factors.  Note that G is the shear modulus and K is 
the bulk modulus of rubber.  A value of K=290ksi (2000MPa) is recommended, although 
the recent LRFD Specifications (AASHTO, 2010) recommend a value of 450ksi 
(3100MPa).  Values of the shear modulus are in the range of 70 to 150psi (0.5 to 1.0MPa) 
so that values of the ratio K/G are in the range of 2000 to 6000 but could be larger if 
softer elastomers are considered.  Also, note that the 2010 AASHTO LRFD 
Specifications recommend expressions for calculating values of coefficients f1 and f2, 
which are denoted as Da and Dr , respectively. 

 
FIGURE 5-3 Locations of Maximum Shear Strain in Bonded Rubber Layers 
 
Values of the coefficient f1 for circular bearings (Table 5-1) are in the range of 1.0 to 
about 1.6.  By comparison, the recent 2010 AASHTO LRFD Specifications (AASHTO, 
2010) recommend the use of a value equal to 1.0.  Note that the AASHTO LRFD 
Specifications deal with regular bridge bearings for which shape factors are small and 
typically less than 10.  Under those conditions, the value of unity for the coefficient f1 is 
appropriate.    Similarly, the value of the coefficient f1 for rectangular bearings (Tables 5-
4 to 5-7) is in the range of 1.2 to about 2.0, whereas the recent 2010 AASHTO LRFD 
Specifications (AASHTO, 2010) recommend the use of a value equal to 1.4.  Again the 
value of 1.4 is appropriate for regular bridge bearings of shape factor of about or less than 
10. 
 
Values of the coefficient f2 for circular bearings (Table 5-8) are in the range of 0.23 to 
0.37, whereas the recent 2010 AASHTO LRFD Specifications (AASHTO, 2010) 
recommend the use of a value equal to 0.375, which is appropriate for regular bridge 
bearings of low shape factor.  Also, the coefficient f2 for rectangular bearings (Tables 5-
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11 to 5-14) is in the range of 0.25 to 0.50, whereas the recent 2010 AASHTO LRFD 
Specifications (AASHTO, 2010) recommend the use of a value equal to 0.50-an 
appropriate value for regular bridge bearings of low shape factor. 

TABLE 5-1 Coefficient f1 for Circular Bearings  
 

 

S 
K/G 

2000 4000 6000 ∞ 

5 1.02 1.01 1.01 1.00 

7.5 1.05 1.03 1.02 1.00 

10 1.10 1.05 1.03 1.00 

12.5 1.15 1.08 1.05 1.00 

15 1.20 1.11 1.07 1.00 

17.5 1.27 1.14 1.10 1.00 

20 1.34 1.18 1.13 1.00 

22.5 1.41 1.23 1.16 1.00 

25 1.49 1.27 1.19 1.00 

27.5 1.57 1.32 1.23 1.00 

30 1.66 1.37 1.26 1.00 
 
TABLE 5-2 Coefficient f1 for Circular Hollow Bearings (inner surface location) 
 

INNER SURFACE 

  Do/Di = 10 Do/Di = 5 

S 
K/G  K/G 

2000 4000 6000 ∞ 2000 4000 6000 ∞ 

5 3.18 3.18 3.18 3.18 2.34 2.33 2.33 2.33 

7.5 3.19 3.18 3.18 3.18 2.35 2.34 2.34 2.33 

10 3.19 3.18 3.18 3.18 2.36 2.35 2.34 2.33 

12.5 3.20 3.19 3.18 3.18 2.38 2.35 2.35 2.33 

15 3.21 3.19 3.19 3.18 2.41 2.37 2.35 2.33 

17.5 3.22 3.20 3.19 3.18 2.44 2.38 2.36 2.33 

20 3.25 3.20 3.19 3.18 2.47 2.40 2.37 2.33 

22.5 3.27 3.21 3.20 3.18 2.51 2.42 2.39 2.33 

25 3.30 3.23 3.21 3.18 2.55 2.44 2.40 2.33 

27.5 3.34 3.24 3.21 3.18 2.60 2.46 2.42 2.33 

30 3.38 3.26 3.22 3.18 2.66 2.49 2.43 2.33 
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TABLE 5-3 Coefficient f1 for Circular Hollow Bearings (outer surface location) 
 

OUTER SURFACE 
  Do/Di = 10 Do/Di = 5 

S 
K/G K/G 

2000 4000 6000 ∞ 2000 4000 6000 ∞ 
5 1.24 1.23 1.22 1.22 1.28 1.27 1.27 1.27 

7.5 1.26 1.24 1.23 1.22 1.31 1.29 1.28 1.27 
10 1.29 1.26 1.24 1.22 1.34 1.30 1.29 1.27 

12.5 1.33 1.28 1.26 1.22 1.37 1.32 1.30 1.27 
15 1.38 1.30 1.27 1.22 1.42 1.34 1.32 1.27 

17.5 1.43 1.33 1.29 1.22 1.47 1.37 1.34 1.27 
20 1.49 1.36 1.31 1.22 1.53 1.40 1.36 1.27 

22.5 1.55 1.40 1.34 1.22 1.59 1.44 1.38 1.27 
25 1.62 1.43 1.37 1.22 1.65 1.47 1.41 1.27 

27.5 1.69 1.48 1.39 1.22 1.72 1.51 1.44 1.27 
30 1.77 1.52 1.43 1.22 1.80 1.56 1.47 1.27 

 

TABLE 5-4 Coefficient f1 for Rectangular Bearings with K/G=2000 
 

K/G = 2000 
L/B 0 0.2 0.4 0.6 0.8 1 

S             
5 1.53 1.44 1.39 1.33 1.27 1.22 

7.5 1.55 1.45 1.41 1.35 1.30 1.25 
10 1.57 1.48 1.43 1.38 1.33 1.29 

12.5 1.60 1.51 1.46 1.41 1.37 1.34 
15 1.64 1.54 1.50 1.46 1.42 1.39 

17.5 1.69 1.59 1.54 1.51 1.48 1.45 
20 1.74 1.64 1.60 1.56 1.54 1.52 

22.5 1.79 1.70 1.65 1.63 1.61 1.59 
25 1.85 1.76 1.72 1.69 1.68 1.66 

27.5 1.92 1.83 1.79 1.77 1.75 1.74 
30 1.98 1.90 1.86 1.84 1.83 1.82 
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TABLE 5-5 Coefficient f1 for Rectangular Bearings with K/G=4000 
 

K/G = 4000 
L/B 0 0.2 0.4 0.6 0.8 1 

S             
5 1.52 1.43 1.39 1.33 1.26 1.21 

7.5 1.53 1.44 1.40 1.34 1.27 1.22 
10 1.54 1.45 1.41 1.35 1.29 1.24 

12.5 1.56 1.47 1.42 1.37 1.31 1.27 
15 1.58 1.48 1.44 1.39 1.34 1.30 

17.5 1.60 1.50 1.46 1.41 1.37 1.33 
20 1.63 1.53 1.48 1.44 1.40 1.37 

22.5 1.66 1.56 1.51 1.48 1.44 1.41 
25 1.69 1.59 1.55 1.51 1.48 1.46 

27.5 1.72 1.63 1.58 1.55 1.52 1.50 
30 1.76 1.67 1.62 1.59 1.57 1.55 

 

TABLE 5-6 Coefficient f1 for Rectangular Bearings with K/G=6000 
 

K/G = 6000 
L/B 0 0.2 0.4 0.6 0.8 1 

S             
5 1.52 1.43 1.39 1.32 1.26 1.21 

7.5 1.52 1.44 1.39 1.33 1.27 1.22 
10 1.53 1.44 1.40 1.34 1.28 1.23 

12.5 1.54 1.45 1.41 1.35 1.29 1.25 
15 1.56 1.46 1.42 1.36 1.31 1.27 

17.5 1.57 1.48 1.43 1.38 1.33 1.29 
20 1.59 1.49 1.45 1.40 1.35 1.32 

22.5 1.61 1.51 1.47 1.42 1.38 1.35 
25 1.63 1.53 1.49 1.45 1.41 1.38 

27.5 1.66 1.56 1.51 1.47 1.44 1.41 
30 1.68 1.59 1.54 1.50 1.47 1.45 
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TABLE 5-7 Coefficient f1 for Rectangular Bearings with K/G= (incompressible 
material) 
 

K/G = ∞ 
L/B 0 0.2 0.4 0.6 0.8 1 

S             
5 1.51 1.43 1.38 1.32 1.25 1.20 

7.5 1.51 1.43 1.38 1.32 1.25 1.20 
10 1.51 1.43 1.38 1.32 1.25 1.20 

12.5 1.51 1.43 1.38 1.32 1.25 1.20 
15 1.51 1.43 1.38 1.32 1.25 1.20 

17.5 1.51 1.43 1.38 1.32 1.25 1.20 
20 1.51 1.43 1.38 1.32 1.25 1.20 

22.5 1.51 1.43 1.38 1.32 1.25 1.20 
25 1.51 1.43 1.38 1.32 1.25 1.20 

27.5 1.51 1.43 1.38 1.32 1.25 1.20 
30 1.51 1.43 1.38 1.32 1.25 1.20 

 

TABLE 5-8 Coefficient f2 for Circular Bearings  
 

 

S 
K/G 

2000 4000 6000 ∞ 

5 0.37 0.37 0.37 0.37 

7.5 0.36 0.36 0.37 0.37 

10 0.34 0.36 0.36 0.37 

12.5 0.33 0.35 0.36 0.37 

15 0.31 0.34 0.35 0.37 

17.5 0.30 0.33 0.34 0.37 

20 0.28 0.32 0.33 0.37 

22.5 0.27 0.31 0.32 0.37 

25 0.25 0.29 0.32 0.37 

27.5 0.24 0.28 0.31 0.37 

30 0.23 0.27 0.30 0.37 
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TABLE 5-9 Coefficient f2 for Circular Hollow Bearings (outer surface location) 
 

OUTER SURFACE 

S 
Do/Di = 10 Do/Di = 5 

K/G K/G 

2000 4000 6000 ∞ 2000 4000 6000 ∞ 

5 0.37 0.38 0.38 0.38 0.36 0.36 0.37 0.37 
20 0.27 0.31 0.33 0.38 0.25 0.29 0.31 0.37 
30 0.22 0.27 0.29 0.38 0.20 0.25 0.27 0.37 

 
TABLE 5-10 Coefficient f2 for Circular Hollow Bearings (inner surface location) 
 

INNER SURFACE 

S 
Do/Di = 10 Do/Di = 5 

K/G K/G 

2000 4000 6000 ∞ 2000 4000 6000 ∞ 

5 0.30 0.31 0.31 0.32 0.31 0.31 0.32 0.33 
20 0.18 0.23 0.26 0.33 0.18 0.23 0.25 0.33 
30 0.12 0.19 0.23 0.33 0.12 0.18 0.22 0.33 

 

TABLE 5-11 Coefficient f2 for Rectangular Bearings with K/G=2000 
 

K/G = 2000 
L/B 0 0.2 0.4 0.6 0.8 1 

S             
5 0.49 0.49 0.49 0.48 0.47 0.46 

7.5 0.49 0.48 0.48 0.47 0.46 0.44 
10 0.48 0.47 0.46 0.45 0.44 0.42 

12.5 0.47 0.46 0.45 0.43 0.41 0.39 
15 0.46 0.44 0.43 0.41 0.39 0.37 

17.5 0.45 0.43 0.41 0.39 0.37 0.35 
20 0.43 0.41 0.39 0.37 0.35 0.32 

22.5 0.42 0.39 0.37 0.35 0.32 0.30 
25 0.41 0.38 0.35 0.33 0.31 0.28 

27.5 0.39 0.36 0.34 0.31 0.29 0.27 
30 0.38 0.35 0.32 0.29 0.27 0.25 

 
 



70 
 

TABLE 5-12 Coefficient f2 for Rectangular Bearings with K/G=4000 
 

K/G = 4000 
L/B 0 0.2 0.4 0.6 0.8 1 

S             
5 0.50 0.49 0.49 0.49 0.48 0.46 

7.5 0.49 0.49 0.49 0.48 0.47 0.45 
10 0.49 0.48 0.48 0.47 0.46 0.44 

12.5 0.48 0.48 0.47 0.46 0.45 0.43 
15 0.48 0.47 0.46 0.45 0.43 0.41 

17.5 0.47 0.46 0.45 0.43 0.42 0.40 
20 0.46 0.45 0.43 0.42 0.40 0.38 

22.5 0.45 0.44 0.42 0.40 0.38 0.36 
25 0.45 0.43 0.41 0.39 0.37 0.35 

27.5 0.44 0.42 0.39 0.37 0.35 0.33 
30 0.43 0.40 0.38 0.36 0.34 0.31 

 

TABLE 5-13 Coefficient f2 for Rectangular Bearings with K/G=6000 
 

K/G = 6000 
L/B 0 0.2 0.4 0.6 0.8 1 

S             
5 0.50 0.50 0.50 0.49 0.48 0.47 

7.5 0.49 0.49 0.49 0.49 0.48 0.46 
10 0.49 0.49 0.49 0.48 0.47 0.45 

12.5 0.49 0.48 0.48 0.47 0.46 0.44 
15 0.48 0.48 0.47 0.46 0.45 0.43 

17.5 0.48 0.47 0.46 0.45 0.44 0.42 
20 0.47 0.46 0.45 0.44 0.42 0.40 

22.5 0.47 0.46 0.44 0.43 0.41 0.39 
25 0.46 0.45 0.43 0.42 0.40 0.38 

27.5 0.45 0.44 0.42 0.40 0.38 0.36 
30 0.45 0.43 0.41 0.39 0.37 0.35 
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TABLE 5-14 Coefficient f2 for Rectangular Bearings with K/G= (incompressible 
material) 
 

K/G = ∞ 
L/B 0 0.2 0.4 0.6 0.8 1 

S             
5 0.50 0.50 0.50 0.50 0.49 0.47 

7.5 0.50 0.50 0.50 0.50 0.49 0.47 
10 0.50 0.50 0.50 0.50 0.49 0.47 

12.5 0.50 0.50 0.50 0.50 0.49 0.47 
15 0.50 0.50 0.50 0.50 0.49 0.47 

17.5 0.50 0.50 0.50 0.49 0.49 0.47 
20 0.50 0.50 0.50 0.49 0.49 0.47 

22.5 0.50 0.50 0.50 0.49 0.49 0.47 
25 0.50 0.50 0.50 0.49 0.49 0.47 

27.5 0.50 0.50 0.50 0.49 0.49 0.47 
30 0.50 0.50 0.50 0.49 0.49 0.47 

 
 
5.3 Calculation of Buckling Loads  
 
The calculation of buckling loads is based on the theories summarized in Constantinou et 
al (2007a), which are primarily based on the works of Stanton and Roeder (1982), Roeder 
et al. (1987) and Kelly (1993).   
 
Elastomeric bearings are checked for instability in both the un-deformed and deformed 
configurations.  Elastomeric bearings can be installed either a) dowelled or recessed in 
keeper plates or b) bolted. Figure 5-4 shows construction details and deformation 
characteristics of the two installations. In the un-deformed state, when loaded only by 
vertical force, the buckling load of bearings installed in either configuration is 
theoretically the same. Under combined vertical load and lateral deformation, the two 
bearings have different instability limits. 
 
The buckling load in the un-deformed configuration is given by 

 cr
r

GSAr
P

T

 
   (5-8) 

In this equation, r is the radius of gyration of the bonded area of rubber (r2=I/A, where I is 
the least moment of inertia) and the parameter λ depends on the assumption for the value 
of the rotational modulus of the elastomeric bearing (it is the ratio of the compression 
modulus to the rotational modulus).   Herein, we use λ=2 for circular or hollow circular 
bearings and λ=2.25 for rectangular or square bearings.   For the typical geometries of 
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circular bearings of bonded diameter D, hollow circular bearings of outside diameter Do 
and inside bonded diameter Di or square bearings of bonded dimension L, the critical load 
is given by the simpler expressions given below. 

 
FIGURE 5-4  Characteristics of Dowelled and Bolted Elastomeric Bearings 
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   (5-11) 

Note that equation (5-11) is appropriate to use for lead-rubber bearings as lead does not 
contribute to the stability of the bearing.   

When a bolted bearing is subjected to combined compression and lateral deformation, the 
buckling load crP is given by the following empirical expression: 
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 r
cr cr

A
P P

A
    (5-12) 

In (5-12), rA  is the reduced bonded area defined as the overlap between the top and 

bottom bonded elastomer areas of the deformed bearing.   The reduced area is given by 
equations (5-13) to (5-16) for  

Rectangular bearings of dimensions B by L (displacement Δ in direction of dimension L) 

 ( )rA B L     (5-13) 

 
Circular bearings of diameter D: 

 
2

( sin )
4r

D
A     (5-14) 

 
In (5-14) 

 12cos ( )
D

  
   (5-15) 

Hollow circular bearings of outside bonded diameter Do (this is approximately 
calculated): 

 

 

( sin )rA

A

 



  (5-16) 

 
In (5-16),  is calculated using (5-15) with D=Do. 
 
5.4 Calculation of Critical Displacements 
 
When bearings are dowelled, equation (5-12) does not control.  Rather, instability occurs 
as overturning or roll-over of the bearing when the overturning moment exceeds the 
stabilizing moment caused by the weight on the bearing.  Figure 5-5 illustrates a 
dowelled bearing at the stage of overturning and the assumed lateral force-displacement 
relations for calculating the critical displacement.   
 
The critical displacement at which overturning occurs, crD is given by the following 

equations. 
 
If 1crD D : 
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 2 1 1

2

( )
cr

PB Qh K K D h
D

K h P
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


  (5-17) 

If 1crD D :  

 
1

cr

PB Qh
D

K h P





  (5-18) 

 

 

FIGURE 5-5 Overturning of Dowelled Bearing and Lateral Force-Displacement 
Relationships 
 

If the bearing behavior is represented by the effective stiffness effK ,  

 cr
eff

PB
D

K h P



  (5-19) 

5.5 Stresses in Reinforcing Shim Plates 
 
Assessment of adequacy of reinforcing shim plates is based on an elastic solution for the 
distribution of stresses developed by Roeder et al. (1987). The theory recognizes that the 
state of stress in the shims of circular bearings is one of radial and hoop tension caused 
by the shear stresses acting at the interface of rubber and shim and of compression in the 
vertical direction caused by the vertical pressure, p(r). This stress state is illustrated in 
Figure 5-6. The distribution of the shear tractions is linear with the radial dimension.  The 
axial pressure is maximized at the center of the shim where  
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 2z

P

A
     (5-20) 
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1.65
2r

s s

t P t P

t A t A
      

 
 (5-21) 

 
In the above equations,   is the Poisson’s ratio of the shim material that herein is 
assumed to be 0.3 (steel).  The minus sign in (5-20) denotes compression. 
 
For design, the Tresca yield criterion can be used to limit the maximum shear stress, max , 

which is given by 

 max 1.65 2
2 2

r z

s

P t

A t

 
 

   
 

 (5-22) 

FIGURE 5-6  Tractions Acting on Circular Shim and Resulting Stresses 
 
In LRFD design, the size of the shims is selected so that the maximum stress due to the 
factored load max (0.6 ) 0.54y yF F   .  Accordingly, the shim thickness st is selected so 

that 

 
1.65

1.08 2
s
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u

t
t

A
F

P




 (5-23) 

In equation (5-23), Pu is the factored load.  The factor 1.65 in (5-23) applies for the case 
of shims without holes. When holes are present in the shims (bearings with central hole, 
or lead-rubber bearings), the value of this factor must be increased.  A value 3.0 is 
recommended for consistency with the AASHTO Specifications (2007, 2010) and the 
recommendations of Roeder et al. (1987).   It should be noted that equation (5-23) for 
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selecting the size of the shims is based on a theory that does not consider the ultimate 
conditions of the shim but rather considers only initiation of yield.  This is intentional 
because (a) yielding of the shims occurs in the interior where it cannot be observed and 
(b) yielding is substantially affected by holes so that conservatism is warranted. 
 
5.6 Assessment of Adequacy of Elastomeric Seismic Isolation Bearings 

 
5.6.1 Introduction 
 
Analysis of a seismically isolated bridge will result in load and displacement demands.  
Herein it is assumed that the bridge is analyzed for service conditions and under seismic 
conditions for a design earthquake (DE) and a maximum considered earthquake (MCE). 
The DE response spectrum is specified to be the largest of (a) a probabilistic response 
spectrum calculated in accordance with the 2008 USGS National Hazard Map for a 5% 
probability of being exceeded in 50 years (or 975 years return period), and (b) a 
deterministic median response spectrum calculated based on the “Next Generation 
Attenuation” project of the PEER-Lifelines program.  Spectra for this earthquake are 
available on line through the Caltrans Acceleration response Spectra (ARS) Online 
website (http://dap3.dot.ca.gov/shake_stable/index.php).  
 
The maximum considered earthquake is defined herein in terms of its effects on the 
isolation system bearings.  These effects will be defined as those of the DE multiplied by 
a factor larger than unity.   The value of the factor may be determined on the basis of 
scientific analysis with due consideration for (a) the maximum effects that the maximum 
earthquake may have on the isolation system, (b) the methodology used to calculate the 
effects of the DE, and (c) the acceptable margin of safety desired.  In general, the value of 
this factor will depend on the isolation system properties and the location of the site.  In 
this document, a presumably conservative value of 1.5 will be utilized for calculating the 
effects on isolator displacements.  The corresponding value for the effects on forces is not 
provided but is left to the Engineer to determine.  In general, values of this factor will be 
in the range of 1.0 to 1.5. 
 
Analysis is performed for upper and lower bound properties of the isolation system so 
that two sets of response parameters are calculated for each loading case. The safety 
checks described herein should be performed for the loads and displacement demands 
calculated for each set of response parameters.  Equations are presented below for the 
checks in LRFD format. Design equations for bearings subjected to tensile loads in 
Design and/or Maximum Considered Earthquake shaking are not provided.   It is 
presumed that elastomeric isolators will not be designed to operate in tension. 
 
5.6.2 Adequacy Criteria 

Service Load Checking 
 
The assumed axial loads and lateral displacements for the service-level checks are 

 Dead or permanent load: DP  
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 Live load: LstP (static component), LcyP  (cyclic component).  When analysis 

cannot distinguish between cyclic and static components of live load, the cyclic 
component shall be taken equal to at least 80% of the total live load. 

 Factored axial load: uP . This is the total load from the relevant service load 

combination of the applicable code, in which any cyclic component is multiplied 
by 1.75.  For example, the factored axial load is calculated as 

1.75u D D L Lst L LcyP P P P      where load factors D  and L are given by 

the applicable code.   When the applicable code is the LRFD (AASHTO, 2007, 
2010), the service load combination is any of the Strength I to Strength V 
combinations in Table 3.4.1-1, although it is expected that combination Strength 

IV with factors 1.50D 
 and 0L 

 and combination Strength I with factors 

1.25D 
 and 1.75L   will be controlling.   Note that the magnification 

factor of 1.75 on the factored live load only applies in the calculation of rubber 
strain and does not apply to the assessment of shim and end plate adequacy or to 
bearing stability. 

 Non-seismic lateral displacement: Sst  (static), Scy  (cyclic)  

 Non-seismic bearing rotation: Sst (static), Scy  (cyclic) 

The static component of rotation should include a minimum construction rotation of 
0.005rad unless an approved quality control plan justifies a smaller value.  Note the 
distinction between static and cyclic components of live load, lateral displacement and 
rotation.  The rotation includes the effects of dead, live and construction loadings.   This 
distinction is necessary in order to magnify the effects of the more damaging cyclic 
components (Stanton et al, 2008). Also, note the magnifying factor of 1.75 that is 
consistent with AASHTO (2010) and Stanton et al (2008).   
 
The shear strains in the rubber are calculated under these loads and displacements and 
using the equations presented earlier in this report.  Note that this formulation somewhat 
differs from that in AASHTO (2010) in the sense that strains are calculated for the total 
factored load (including the magnification of the cyclic live load by factor 1.75), whereas 
in AASHTO the components of strain for static and cyclic loads are calculated first and 
then added after multiplication of the strains due to cyclic loads by factor 1.75.  The 
result is the same but for a difference in the calculation of the bearing area.  In AASHTO, 
the area is the gross bearing area, whereas herein it is the reduced area formed by the 
overlap of the top and bottom bonded areas of rubber in the deformed configuration.  The 
use of the reduced area is carried over in this document from the 1999 AASHTO Guide 
Specifications for Seismic Isolation Design (however, the 2010 revision inexplicably uses 
the bonded rubber area). 
 

Shear strain due to compression  

 1
u u
Cs

r

P
f

A GS
    (5-24) 
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where G is the shear modulus, S is the shape factor, rA  is the reduced bonded rubber area 

given by (5-13) through (5-16) for displacement Sst Scy      and all other terms are 

defined above. 
 

Shear strain due to lateral displacement  

 
1.75

S

Sst Scyu
S

rT


  
   (5-25) 

Shear strain due to rotation  
 
(Note that dimension L applies for rectangular bearings with axis of rotation 
parallel to dimension B-where B is larger than L; for circular bearings, L=D; for 
circular hollow bearings, L=Do). 

 
2

2

( 1.75 )
s
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r

r
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f

tT

 



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Buckling load at service displacement S  

 
'

s

r
cr cr

A
P P

A
   (5-27) 

 
In the above equation crP is calculated using (5-9) to (5-11). 

 
A bearing design may be considered acceptable if 
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 (5-30) 

 
'

2.0
( )

scr

D D L Lst Lcy

P

P P P 


 
  (5-31) 

 
In equation (5-30), 1.65   applies for shim plates without holes and a value of 3.0 
should be used otherwise.  The minimum thickness requirement for the shims 
corresponds to 14 gage metal sheet. 
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Note that the limit in equation (5-31) for bearing stability implies a safety factor of about 
3.0 for a check based on un-factored loads.  Also, note that in the stability check and in 
the shim thickness calculation the factored load does not contain the additional factor of 
1.75 on the cyclic component of the live load.  This factor is used to account for the 
effects of the cyclic component of the live load in the calculation of rubber shear strains 
as research has shown that the cyclic component of the load accelerates failure due to 
fatigue (Stanton et al, 2008).  The cyclic component of live load does not have an adverse 
effect on the stability of the bearing.  Also, note that equations (5-27) and (5-31) appear 
very different from the equations contained in the AASHTO LRFD Specifications for 
elastomeric bearings (see AASHTO 2007 or 2010, equations 14.7.5.3.4-2, 14.7.5.3.4-3 
and 14.7.5.3.4-4).  We prefer the use of equations (5-27) and (5-31) because of the 
following reasons: (a) they have a rational theoretical basis (Kelly, 1993), (b) they have 
been experimentally validated (see Constantinou et al, 2007a for description), (c) they 
account for the effect of lateral deformation, whereas those of AASHTO do not, (d) are 
LRFD-based, whereas those of AASHTO are not, and (e) the margin of safety provided is 

clearly evident (factor 2.0 in equation 5-31-equivalent to the use of a   factor of 0.5) so 
that adjustments to the adequacy assessments equations may be readily done if such a 
need is justified. 
 
The limits on the shear strain due to factored load and displacements in equation (5-29) 
are based on the limit on strain for the un-factored loads in the Guide Specifications for 
Seismic Isolation Design (AASHTO, 1999), which is 5.0.   The difference between the 
limit of 6.0 in equation (5-29) and 5.0 in 1999 AASHTO is to conservatively account for 
the use of factored rather than un-factored loads and displacements.  Moreover, the recent 
2010 AASHTO LRFD Specifications (AASHTO, 2010) utilize equations that are 
virtually identical to (5-28) and (5-29) but with “service” combination load factors and 
which have limits of 3.0 and 5.0 rather than 3.5 and 6.0, respectively.  This difference in 
limits is justified as being related to the higher quality of construction of seismic isolators 
and the requirement for prototype and quality control or production testing of isolators.  
The authors believe that even higher limits are justified because of the use of “strength” 
rather than “service” combination load factors (Table 3.4.1-1 of 2010 AASHTO). 
 
Design Earthquake (DE) Checking 
 
The assumed axial loads and lateral displacements for the Design Earthquake (DE) 
checks are as follows.   
 

 Dead load: DP  

 Seismic live load:
DESLP .  This is the portion of live load assumed acting 

simultaneously with the DE.  Per the AASHTO LRFD (AASHTO, 2007, 2010), 
this portion is determined by the Engineer with recommended values of 0% to 
50% of the live load for use in the Extreme Event I load combination case.  
Herein the seismic live load for use in the DE is recommended to 

be 0.5
DESL LP P , where PL is the live load; is considered to be static load and the 
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associated load factor is unity.  This is consistent with load combination case 
Extreme Event I of the AASHTO LRFD (AASHTO, 2007, 2010).  

 Earthquake axial load due to DE shaking: 
DEEP , where earthquake-induced axial 

loads can result from both overturning moments in the superstructure and vertical 
earthquake shaking. 

 Factored axial load.  This load is determined in accordance with the load 
combination case Extreme Event I of the AASHTO LRFD (AASHTO, 2007, 

2010): 
DE DEu D D SL EP P P P    

 Load factor D is given in the seismic load combination of the applicable code.  

For the AASHTO LRFD (AASHTO, 2007, 2010), the relevant load combination 

is Extreme Event I and the load factor D  is p . 

 Non-seismic bearing rotation: Sst (static), Scy  (cyclic) 

 Seismic lateral displacement:
DEE . 

 Non-seismic lateral displacement: ( )S Sst Scy       

 

The non-seismic lateral displacement is a portion  of S Sst Scy     considered to 

exist simultaneously with the seismic lateral displacement.  Herein the value 0.5   is 
proposed.  Bearing rotation due to earthquake effects is neglected for this check. Note 
that the seismic live load is the point-in-time live load acting at the time of the 
earthquake; a value of 0.5 LP  is generally used for buildings and recommended herein but 

a smaller value might be justified for bridges carrying large live loads. 
 

Shear strain due to compression  

 1DE

u u
C

r

P
f

A GS
    (5-32) 

 
where the reduced bonded rubber area is given by (5-13) through (5-16) for a 
displacement 

DES ED     . 

 
Shear strain due to lateral displacement  

 DE

DE

S Eu
S

rT




  
  (5-33) 

 
A bearing design is considered acceptable if 

 0.5 7.0
C SDE DE

u u u
rs       (5-34) 
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In equation (5-34) 
s

u
r is given by equation (5-26) and is calculated for the service load 

conditions.    

           Shim Plate Thickness 
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 (5-35) 

 
Equation (5-35) is based on equation (5-30) but with the factor   set equal to 1.65 on the 
basis that the reduced or overlapping bonded rubber area does not include the central 
hole.  Also in equation (5-35), yF is the minimum yield strength of the shim plate 

material.   No stability checks are performed for the DE.  Rather, stability checks are 
performed for the MCE. 
 
The limit of strain in equation (5-34) may be justified by comparison to the acceptable 
limit of strain in the AASHTO Guide Specifications for Seismic Isolation Design 
(AASHTO, 1999; also 2010 revision).  The limit for the same combination of strains but 
for un-factored loads and without consideration for non-seismic displacements added to 
the seismic displacement (equation 5-33) is 5.5.  Adjustment to LRFD formulation would 
have raised the limit to just less than 7.0 (conservatively an increase by 1.25).  Herein, the 
limit of strain is set at 7.0 although a higher limit could be justified because of the 
expected increase in seismic displacement due to the change in the definition of the 
seismic hazard in the United States (increase in the return period of the DE). 
 
Maximum Considered Earthquake (MCE) Checking 
 
The assumed axial loads and lateral displacements for the Maximum Considered 
Earthquake (MCE) checks are as follows. 
 

 Dead load: DP  

 Seismic live load:
MCESLP .  This the portion of live load assumed acting 

simultaneously with the MCE.  The engineer-of-record might assume a point-in-
time seismic live load for the MCE check that is smaller than that for the DE 
check because the mean annual frequency of MCE shaking is less, and sometimes 
much less, than that of DE shaking. There are no guidelines in applicable 
specifications such as AASHTO LRFD (AASHTO, 2007, 2010) for determining 
this load.  The seismic live load for use in the MCE is recommended to 

be 0.5
MCE DESL SLP P ; is considered to be static load and the associated load factor 

is unity.   

 Earthquake axial load due to MCE shaking: 
MCEEP , where earthquake-induced 

axial loads can result from both overturning moments in the superstructure and 
vertical earthquake shaking.  This load is not calculated by analysis in the MCE.  
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Rather, it is calculated as a factor times the load 
DEEP in the DE.  This factor 

should be determined by rational calculation and its value is expected to be in the 
range of 1.0 to 1.5.  In the absence of any rational calculation, the value should be 

1.5, that is, 1.5
MCE DEE EP P .  

 Factored axial load.  This load is determined in accordance with the load 
combination case Extreme Event I of the AASHTO LRFD (AASHTO, 2007): 

MCE MCEu D D SL EP P P P    

 Load factor D is given in the seismic load combination of the applicable code.  

For the AASHTO LRFD (AASHTO, 2007, 2010), the relevant load combination 

is Extreme Event I and the load factor D  is p . 

 Non-seismic bearing rotation: Sst (static), Scy  (cyclic)  

 Seismic lateral displacement:
MCEE .  This displacement is not calculated by 

analysis in the MCE.  Rather, it is calculated as a factor times the displacement 

DEE  
in the DE: 1.5

MCE DEE E   . 

 Non-seismic lateral displacement 0.5 0.5 ( )S Sst Scy       0.25( )Sst Scy    .  

(Factor  is defined in the DE checks and is recommended to be equal to 0.5).  
Note that the non-seismic displacement assumed to co-exist with the MCE 
seismic lateral displacement is equal to half of the non-seismic displacement 
considered to co-exist with the DE seismic lateral displacement. 
 

Bearing rotation due to maximum earthquake effects is neglected for this check. Shear 
strains in the rubber and the buckling load (if bolted) and rollover displacement (if 
dowelled) are calculated using the procedures and equations set forth earlier.  
 

Shear strain due to compression  

 1MCE

u u
C

r

P
f

A GS
     (5-36) 

 
In equation (5-36), the reduced bonded rubber area is given by equations (5-13) through 
(5-16) for a displacement 0.5

MCES ED     . 

 
Shear strain due to lateral displacement  

 
0.5

MCE

MCE

S Eu
S

rT



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  (5-37) 

 
Buckling load at MCE displacement 
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 ' 0.15
MCE

r
cr cr cr

A
P P P

A
   (5-38) 

 
where crP  is calculated using equations (5-9) to (5-11) and the reduced bonded area is 

computed for the displacement 0.5
MCES ED     .    

 
For adequacy assessment against rollover, the least factored load, the lower bound 
stiffness, the height including masonry plates and the bonded diameter are used to 
conservatively compute u

crD  using equations (5-17) to (5-18). 

 
A bearing design is considered acceptable if 

 0.25 9.0
C SMCE MCE

u u u
rs      (5-39) 

In equation (5-39) 
s

u
r is given by equation (5-26) and is calculated for the service load 

conditions.   The limit of total factored strain in equation (5-39) is set at 9.0 (that is an 
increase of nearly 30% over the limit in the DE) to account for the fact that the shear 
strains due to compression and shear are increased by a factor of about 1.5 over the DE 
case.  Moreover, the following conditions shall be checked for sufficient thickness of the 
shims and for bearing stability: 

 
1.65

1.9 mm (0.075inch)
1.08 2

s
r

ye
u

t
t

A
F

P

 


  (5-40) 

 
'

1.1MCEcr

u

P

P
   (5-41) 

 1.1
0.5

MCE

u
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Equation (5-40) is based on equation (5-30) but with the factor   set equal to 1.65 on the 
basis that the reduced or overlapping bonded rubber area does not include the central 
hole. Also in equation (5-40), the reduced area is calculated for the 
displacement 0.5

MCES ED     .  The quantity yeF represents the expected yield 

strength of the shim plate material (see American Institute of Steel Construction, 2005b). 
( ye y yF R F , yR =1.3 for ASTM A36 and yR =1.1 for ASTM A573 Grade 50 steel plates)   

Equation (5-41) is consistent with the requirements of Section 12.3 for Vertical Load 
Stability in the AASHTO Guide Specifications (AASHTO, 1999 and 2010 revision).  In 
the AASHTO Guide Specification, it is required that a bearing is stable for a load equal 
to 1.2 times the dead load plus any seismic live load plus any load resulting from 
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overturning and 1.5 times the displacement in the DE plus any offset displacement.  In 
equation (5-42), u

crD should be calculated on the basis of equations (5-17) to (5-19) using 

(a) the lower bound properties of the bearing and (b) load P equal to 0.9PD.  Note that the 
use of the lower bound properties and the least axial load results in the least value for u

crD .  

Also note that the calculation of the least axial load is based on the use of the minimum 
load factor for gravity load in the LRFD Specifications (AASHTO, 2007, 2010). 
 
5.6.3 Example of Elastomeric Bearing Adequacy Assessment 
 
Consider the lead-rubber bearing of Figure 5-7.  The bearing is one of several types of 
elastomeric bearings used at the Erzurum Hospital in Turkey (bearing is nearly identical 
to the bearing of example 3 in Kalpakidis and Constantinou, 2009b).  The analysis 
performed here is consistent with the loads and deformations that the actual bearing has 
been designed for.  The bearing adequacy will be assessed in the MCE based on the 
following data:  
 
Dead load: 10000DP kN  

Live load: 1000LstP kN , 3000LcyP kN
 

Non-seismic lateral displacement: 50Sst mm  , 0Scy   

Non-seismic bearing rotation: 0.005Sst rad  , 0.005Scy rad   

DE lateral seismic displacement: 450
DEE mm   

DE bearing axial load: 1900
DEEP kN  

Rubber shear modulus:
 

0.62G MPa  

Lead effective yield stress: 10L MPa   

Bonded rubber diameter: D=1117.6mm 
Lead core diameter: DL=304.8mm 
Rubber layer thickness: t=8mm 
Total rubber thickness: Tr=248mm 
Bearing height (including masonry plates for conservatism): h=556mm 
Steel shim material: ASTM A36 for which the minimum yield stress and expected 

strength are 248yF MPa  and 1.3 248 322.4ye y yF R F MPa     

Factor for calculating bearing displacement in the MCE=1.5 
Factor for calculating bearing axial load in the MCE is conservatively assumed to be 1.5.   
 
Calculations are as follows: 
 

 Factored load (MCE conditions)  
1.25

1.25 10000 0.25 (3000 1000) 1.5 1900 16350

0.25( ) 1.5
MCE MCE DEu D D SL E D Lst Lcy E

kN

P P P P P P P P 

      

      


 

 Seismic plus non-seismic displacement  
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0.5 0.5 0.5 ( ) 1.5

0.25 (50 0) 1.5 450 687.5
MCE st cy DES E S S E

mm

          

     
 

 Equations (5-15) and (5-16) for the reduced area 
 

 
 
FIGURE 5-7 Example Lead-Rubber Bearing 
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2sin
908020 0.26943 244648mmrA A

 
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   
 

Note:  
sin

0.26943rA

A

 

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   
 

 Shape factor: 
908020

32.33
1117.6 8

A
S

Dt 
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   
 

 

 Equation (5-36):
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Factor f1 was determined from Table 5-1 for S=30 and K/G=4000. 
 

 Equation (5-37): 
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 Equation (5-26) 
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Factor f2 was determined from Table 5-8 for S=30 and K/G=4000.
 
 

 Equation (5-39) 

0.25 4.568 2.772 0.25 2.337 7.924 9
MCE MCE

u u u
C S rs          OK 

 
 Equation (5-11):  

4 40.62 1117.6
0.218 0.218 0.627 66638

8 248cr
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P f kN

tT


    


 

Note the use of equation (5-11) for lead-rubber bearings for which the lead does 
not contribute to stability so that the bearing is treated as a hollow bearing for 

which quantity
2 2

2 21 1 / 1i i i

o o o

D D Df D D D
                

 

is equal to 0.627 and 

Di=304.8mm and Do=1117.6mm. 

 Equation (5-38): ' 66638 0.26943 17954
MCE

r
cr cr

A
P P kN

A
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 Equation (5-41): 

'
17954
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16350

MCEcr

u

P

P
    OK 

 Equation (4-1) for lead-rubber bearing strength 
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 Equation (4-2) for bearing post-elastic stiffness 
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 Equation (5-18): 
1
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For critical displacement calculation, load P=0.9PD=0.9x10000=9000kN, the 

height including masonry plates and the bonded diameter are used (conservative). 

 Equation (5-42): 
941

1.37 1.1
0.5 687.5

MCE

u
cr

S E

D


  

    OK 

 Equation (5-40) 
  

1.65 1.65 8
4.11  

244648
1.08 2 1.08 322.4 2

16350000

s
r

ye
u

t
t mm

A
F

P


  

   
  

Provided shims have ts=4.76mm, therefore OK. 
 

5.7 Assessment of Adequacy of End Plates of Elastomeric Bearings 
 

5.7.1  Introduction 
 
Critical for the design of end plates in elastomeric bearings is the deformed configuration 
due to the development of large moments or equivalently the transfer of axial load 
through a small “reduced area”. Consider that an elastomeric bearing carries axial load P 
and undergoes a lateral displacement u. Figure 5-8 shows a deformed bearing and the 
forces acting on the end plates. A moment M develops as a result of equilibrium in the 
deformed configuration (includes the P.u component). There are two alternative 
approaches at looking at the bearing in terms of the analysis and design of the end plates: 
 

a) Considering that the load P is carried in the rubber through the reduced (or 
effective area), which is defined as the overlap area between the top and bottom 
bonded rubber areas. (For example, the reduced area is given by equations (5-13) 
to (5-16) for MCE conditions). 

b) Considering the action of the axial load P and overturning moment M acting on 
the entire area of the steel end plates. 

 
Analysis and safety checks of the end plates need to be performed for the DE and the 
MCE level earthquakes. For the latter case, the reduced area is smaller and the 
overturning moment and axial force are larger. Herein, we require that in both checks the 
end plates are “essentially elastic”. This is defined as follows: 
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a) In the DE, “essentially elastic” is defined as meeting the criteria of the AISC for 

LRFD (American Institute of Steel Construction, 2005a) using the minimum 
material strengths and appropriate   factors. 

b) In the MCE, “essentially elastic” is defined as meeting the criteria of the AISC for 
LRFD using the expected material strengths and unit   factors. The expected 
material strengths should be determined using the procedures described in the 
Seismic Provisions of the American Institute of Steel Construction (AISC, 
2005b). 

 
The axial load P is the factored axial load Pu per Section 5.6.2.  The moment M is given 
by 

                                                       
'

2 2
HF h P u

M
 

                                                  (5-43) 

 
where HF  is the horizontal bearing force (calculated at displacement u using the bearing 

properties assumed in the calculation of displacement u-typically lower bound properties 
when u is calculated in the MCE and the upper bound properties when u is calculated in 
the DE) and 'h  is the total height of the bearing including the end plates. 
 
5.7.2 Reduced Area Procedure 
 
Figure 5-7 shows typical construction details of an elastomeric bearing (in this case a 
lead-rubber bearing). The end plates consist of an internal plate and a mounting plate, 
which are bolted together using countersunk bolts. Due to the large number of bolts used 
to connect the two plates, it is typical that the bolts have sufficient shear strength so that 
the two plates “work” as a single composite plate with thickness equal to the total 
thickness of the two plates. 
 
Figure 5-1 presents a schematic of an elastomeric bearing with the internal construction 
exposed for the purpose of performing calculations. The following symbols are used: 
 

a) Top mounting plate thickness: tpt  

b) Bottom mounting plate thickness: bpt  

c) Internal plate thickness: ipt  

d) Bonded rubber diameter: 2 sL D c  , where sc is the rubber cover thickness and 

D is the diameter of the bearing 
e) Thickness of grout below and above (when superstructure is concrete): gt  

f) The procedure followed for the end plate design is based on the design of column 
base plates (e.g., see DeWolf and Ricker, 2000). For the reduced area procedure, 
the axial load P is considered transferred through the reduced area, so that the 
procedure for axially loaded plates is used. Moreover, we assume that the reduced 
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area has rectangular shape with dimensions 0.75L by b, where L is the bonded 
rubber diameter. 

 
 

 
FIGURE 5-8  Deformed Bearing and Forces Acting on End Plates 
 
Figure 5-9 illustrates the procedure for checking the end plate thickness. The following 
steps should be followed given a factored load P, displacement u and bearing geometry 
per Figure 5-1: 
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a) Calculate the reduced area rA . Do not remove the area of lead in case the bearing 

is a lead-rubber bearing (load P is transferred through the lead too). 
 

b) Calculate the dimension b of the equivalent rectangular reduced area: 
 

 
0.75

rA
b

L
                (5-44) 

 
c) Calculate the concrete design bearing strength: 

 
 '1.7b c cf f  (5-45) 

 
In equation (5-45), '

cf  is the concrete compression strength and c  is the 

reduction factor for the concrete strength.  Also, the factor 1.7 implies that the 
assumption of confined concrete was made. It is achieved either by having a 
concrete area at least equal to twice the reduced area or by proper reinforcement 
of the concrete pedestal. 

 
d) Calculate the dimension 1b  of the area of concrete carrying load: 

 

 1 0.75 b

P
b

Lf
  (5-46) 

 
e) Calculate the loading arm: 

 

 1

2

b b
r


  (5-47) 

 
f) Calculate the required plate bending strength per unit length: 

 

 
2

2
b

u

f r
M   (5-48) 

 
g) Calculate the required end plate thickness: 

 

 
4 u

b y

M
t

F
  (5-49) 

 
In the above equation, yF

 
is the yield stress of the steel plate-minimum value for DE 

conditions and is the expected yield stress value (= y yR F , yR =1.3 for ASTM A36 and 
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yR =1.1 for ASTM A573 Grade 50 steel plates) for MCE conditions.  Parameter b  is the 

resistance factor for flexure. 
 
The parameters c  and b  are respectively equal to 0.65 and 0.9 for DE conditions and 

equal to unity for MCE conditions. 
 
Two additional checks are needed: 
 

a) Tension in the anchor bolts. This cannot be checked on the basis of the reduced 
area procedure. It will have to be checked using the load-moment procedure 
described in the next section. 
 

b) Bearing on concrete. The stress transferred through the reduced area to the 
concrete pedestal must be less than the concrete bearing design strength. In this 
case the reduced rubber area 0.75L by b is enhanced by the contributions from the 
steel end plates and the grout (which is assumed stronger than the concrete and 
subject to only compression) so that the area to transfer load is  

 
 (0.75 2 2 2 )( 2 2 2 )c ip bp g ip bp gA L t t t b t t t        (5-50) 

 
Note that it is assumed that the load is spread over the steel plates and grout in 45 
degree wedges. It is acceptable when 

 

 b
c

P
f

A
  (5-51) 

Note that use of equations (5-44) and (5-46) ensures that equation (5-51) is satisfied, 
there is no need to check for bearing on concrete. 
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FIGURE 5-9  End Plate Design Using Reduced Area Procedure 
 
5.7.3 Load-Moment Procedure 
 
In this procedure the bearing concrete stress distribution acting on the mounting plate and 
any tension in the anchor bolts may be determined. The procedure follows the principles 
used in the design of column end plates with moments. 
 
The procedure starts with the assumption that there is no bolt tension. Figure 5-10 
illustrates the free body diagram of the bearing. The mounting plate is square of 
dimension B. Equilibrium in the vertical direction and of moments about point O results 
in the following for dimension A and stress 1f : 
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3

3
2

M
A B

P
   (5-52) 

 

 1

2
b

P
f f

AB
   (5-53) 

 

b

 
 
FIGURE 5-10 Free Body Diagram of End Plate without Bolt Tension 
 
Equations (5-52) and (5-53) are valid provided that the stress 1f  is less than or equal to 

the concrete design bearing strength given by equation (5-45). If the dimension A is 
larger than B, the assumption on stress distribution is incorrect and calculations should be 
repeated by assuming a trapezoidal distribution of stress over the entire B by B area of the 
plate. Such situation arises in cases of small eccentricity, that is, small ratio of M to P. In 
this situation too, there is no bolt tension. 
 
If the stress 1f  is larger than bf , bolt tension develops. That situation is illustrated in 

Figure 5-11. Now the maximum concrete stress equals the concrete design bearing 
strength bf . Equilibrium in the vertical direction and of moments about point 'O results in 

the following equations for dimension A and bolt tension T: 

 2 ( ) ( ) ( ) 0
6 2 2

b bBf f BC PB
A A M PC      (5-54) 

 

SQUARE B, MOUNTING 
PLATE 
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2

bf AB
T P   (5-55) 

b 

 
FIGURE 5-11  Free Body Diagram of End Plate with Bolt Tension 
 
Equation (5-54) is solved first for A, which is used in equation (5-55) to calculate the bolt 
tension. Note that the bolt tension T represents the force in a number of bolts at a distance 
C from the edge of the mounting plate. In case of several bolts, an assumption needs to be 
made on the distribution of bolt tension. 
 
A result of the analysis by this procedure is the distribution of concrete stress below the 
mounting plate. This distribution may be used to check the safety of the mounting plate. 
Also, in case of bolt tension, the mounting plate is bent. Typically this involves 
consideration of bending of the mounting plate about the section at the junction of the 
mounting and internal plates. Given that the mounting plate is square and the internal 
plate is circular, there is a complexity in calculating the bending stress in the mounting 
plate. The best procedure is to utilize yield line theory to check the safety of the mounting 
plate. A simple and conservative approach is to replace the circular internal plate with an 
equivalent square one and then calculate the bending moment in the mounting plate using 
as bending arm the difference between the dimensions of the mounting plate and the 
equivalent square internal plate. This is illustrated in Figure 5-12. Given the sensitivity of 

SQUARE B, MOUNTING 
PLATE 
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the calculation to the length of the bending arm and the inherent conservatism in the 
calculation, it is appropriate to consider an equivalent square dimension b per Figure 5-12 
that is slightly larger (say by 5%) than what the equal area rule gives. It is suggested to 

use 0.93b L , which is about 5% larger than / 2L . 
 

 
FIGURE 5-12 Simplified Procedure for Checking a Mounting Plate 
 
In case of circular mounting plates the procedure needs to be modified for first 
calculating the pressure below the plate and second for calculating the bending moment. 
In the latter, the procedure used for sliding bearings should be used. 
 
5.7.4 Example 
 
Consider the bearing of Figure 5-13. In the MCE, the factored load P is 6000kN, the 
displacement u=555mm and the corresponding moment M=1900kN-m. The factored load 
is given by 1.25

MCE MCED SL EP P P P   . The displacement is given by 0.5
MCES Eu     .  

SQUARE B, MOUNTING 
PLATE 
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Concrete has ' 27.6cf MPa  and is considered confined. Steel is ASTM A572, Grade 50 

with expected value of yield stress yF 380MPa (per AISC 2005b, Grade 50 steel has 

minimum yield stress of 50ksi and the expected strength 
is 1.1 50 55ksi = 380MPay yR F    ). Bearing dimensions are B=900mm, L=813mm 

(bonded diameter), ipt =38.1mm, bpt =31.8mm and the grout thickness is gt  25mm. 

 

 
FIGURE 5-13 Bearing for End Plate Adequacy Assessment Example 
 
Calculations are as follows: 
 

 Equations (5-14) and (5-15) for the reduced area. Note that for this calculation the 
area A is appropriately calculated as the area enclosed by the bonded diameter 
without accounting for the area of the lead core (the lead core carries load too).  
The Engineer may opt to perform a more conservative calculation by using the 
reduced area with the area of lead subtracted (the more conservative calculation 
has no effect on the assessment of adequacy in this example). 
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1 1 555
2cos 2cos 1.6388

813

u

L
          

   
 

 
2

2sin 105940mm
4r

L
A      

 
 Equation (5-44) 

 
105940

174mm
0.75 0.75 813

rA
b

L x
    

 
 Concrete design bearing strength, equation (5-45) 

 
'1.7 1.7 1 27.6 46.9MPab c cf f x x    

 
 End plate safety, equations (5-46), (5-47), (5-48) and (5-49) 

 

1

6000000
210mm

0.75 0.75 813 46.9b

P
b

Lf x x
    

 

1 210 174
18mm

2 2

b b
r

 
    

 
2 246.9 18

7598N-mm/mm
2 2
b

u

f r x
M     

 

4 4 7598
9mm 38.1 31.8 69.9mm

1 380
u

ip bp
b y

M x
t t t

F x
          OK 

 
 Bearing on Concrete, equations (5-50) and (5-51) 

 

2

(0.75 2 2 2 )( 2 2 2 )

(0.75 813 2 38.1 2 31.8 2 25)(174 2 38.1 2 31.8 2 25)

290876mm

c ip bp g ip bp gA L t t t b t t t

x x x x x x x

       

        

 
6000000

20.6MPa 46.9MPa
290876 b

c

P
f

A
      OK 

 
 Bolt Tension, assume no tension and use equations (5-52) and (5-53), subject to 

check. 
63 1900 10

3 1.5 900 3 400mm
2 6000000

M x
A B x x

P
      
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1

2 2 6000000
33.3 46.9

400 900 b

P x
f MPa MPa f

AB x
       OK  

 
NO BOLT TENSION 

 
 Mounting Plate, procedure of Figure 5-12 

 
Equivalent square bonded rubber area 

0.93 0.93 813 756mmb L x    , say 750mm 
 

Bending arm  
900 750

75mm
2 2

B b
r

 
    

 
Required bending moment strength 

2 2
1 33.3 75

93656N-mm/mm
2 2u

f r x
M     

 

Required thickness 
4 4 93656

31.4mm 31.8mm
1 380

u
bp

b y

M x
t

F x
          

     (Available thickness is 31.8mm)  OK 
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SECTION 6 
ELASTOMERIC BRIDGE BEARING ADEQUACY ASSESSMENT 

 
6.1 Introduction 
 
This section presents a formulation for the assessment of adequacy of steel reinforced 
elastomeric bridge bearings, otherwise known as expansion elastomeric bearings (not 
seismic isolators).  These bearings are devices to transmit loads in bridges while allowing 
for translation and rotation demands due to traffic loads, thermal loads, creep and 
shrinkage, pre-stressing, and construction tolerances.  Current design specifications for 
bridges (2007 AASHTO and the recent 2010 AASHTO) do not explicitly present seismic 
provisions for bridge bearings.  For example, Section 14.6.5 of the 2007 and 2010 
AASHTO LRFD Specifications only provides general language without details of 
adequacy assessment.   
 
In this document the adequacy assessment is based on a design philosophy, championed 
by Caltrans, with the following attributes: 
 

1) The bearings are steel reinforced elastomeric bearings.  Fabric reinforced bearings 
are not considered.  
  

2) The bearings will be designed to adequately perform under service load 
conditions that are characterized by load combination limit states Strength I to 
Strength V of the AASHTO LRFD Specifications (AASHTO, 2007, 2010).   
 

3) The bearings will be designed to adequately perform under seismic conditions in 
the DE (characterized by the AASHTO LRFD load combination Extreme Event I) 
provided that the seismic displacement plus the applicable portion of the non-
seismic displacement is within the displacement capacity limit of the bearings. 
 

4) The bearings will be provided with an adequate surface (seat width) for 
subsequent movement in order to accommodate displacement demands beyond 
the DE even as damage occurs.  It is understood that under these conditions the 
bearings may be damaged, an inspection following an earthquake will be needed 
and replacement of the bearings after an earthquake may be needed.    
 

5) If the DE displacement demand plus the applicable portion of the non-seismic 
displacement exceeds the prescribed limits, the bearings need to be either re-
designed or tested.  Alternatively, the Engineer may utilize PTFE/spherical sliding 
bearings capable of large displacement capacity.  When a better performance 
objective is warranted, seismic isolation should be used. 
 

6) When not meeting the adequacy criteria in the DE, the bearings will have to 
undergo testing in order to verify their capacity to sustain load when either sliding 
or roll-over occurs, even as they experience damage.  Caltrans funded testing of 
common configurations of elastomeric bearings and the results may be utilized to 
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qualify the tested configurations for application without additional testing 
(Konstantinidis et al, 2008).  Although the bearings tested had individual rubber 
layer thickness equal to 12.7mm (0.5inch), the results are applicable to slightly 
different thicknesses and geometries as discussed in the examples presented later 
in this chapter.  Moreover, some quality control program needs to be implemented 
in the production of the bearings.  Accordingly, the method of analysis followed 
for the bearings is consistent with Method B of the AASHTO LRFD (AASHTO, 
2007, 2010).   Method B is preferred as the bearings are expected to achieve a 
particular performance under earthquake conditions for which analysis is not yet 
sufficiently reliable. 
 

The elastomeric bridge bearings considered herein are based on the currently acceptable 
configurations tested and reported in Konstantinidis et al (2008).  In general, these 
bearings have the following characteristics and assumed behavior: 
 

1) The bearings are constructed of either natural rubber or neoprene.  The adequacy 
acceptance criteria are currently the same for either material although in the future 
the criteria may differentiate between the two types as knowledge on their 
behavior accumulates.   
 

2) The bearings are unbonded to the structure above and below-that is, the lateral 
force is transferred through friction between rubber and either concrete or steel.  
Bolted, dowelled and keeper plate-recess connections used for seismic isolators 
are not considered. 
 

3) The bearings are either square or rectangular (long dimension B perpendicular to 
bridge longitudinal axis, short dimension L parallel to longitudinal bridge axis) in 
plan configuration and with the exterior (top and bottom) rubber layers having 
thickness equal to half the thickness of the interior bonded rubber layers.  The 
bearings do not incorporate any holes.   Figure 6-1 illustrates the construction of 
one such bearing (adapted from Konstantinidis et al, 2008).  The reduced 
thickness of the exterior layers results in a reduction of shear strain in rubber due 
to compression by comparison to the interior layers but an increase in shear strain 
due to rotation.  However for properly designed bearings, the net effect is that the 
total strain is still within acceptable limits.    Nevertheless, strains in both interior 
and exterior layers need to be calculated and the adequacy assessment needs to be 
performed for both groups of layers. 
 

4) Given that the exterior top and bottom layers of rubber have half the thickness of 
the interior layers, critical locations for assessment of adequacy in terms of rubber 
shear strains are the interior layers.  This is due to the fact that the exterior layers 
experience about half the shear strain due to compression (due to the doubling of 
the shape factor) whereas the shear strain due to rotation is reduced because the 
reduction in rubber thickness results in increase in the rotational stiffness of the 
exterior layers and, therefore, reduction in the angle of rotation. 
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5) The bearings typically have a shape factor (see definition in Section 5) of about 
10 or less but with a minimum acceptable value of 5.  For example, the bearings 
tested by Konstantinidis et al (2008) had a shape factor of about 9 (note that 
Konstantinidis et al report the rubber layer thickness as 12mm but actually it was 
12.7mm or  0.5inch).  By contrast, seismic isolation bearings are now typically 
designed with much higher value of the shape factor.  Also, bridge bearings are 
typically constructed of elastomer with nominal shear modulus of about 100psi 
(0.7MPa), although values in the range of 80 to 175psi (0.6 to 1.2MPa) are 
permitted by the 2007 and 2010 AASHTO LRFD Specifications. 

 
 

FIGURE 6-1 Bridge Elastomeric Bearing Internal Construction and 
Connection Details (adapted from Konstantinidis et al, 2008) 

 
6.2 Assessment of Adequacy of Steel Reinforced Elastomeric Bridge Bearings 
 
Analysis of a conventional bridge will result in load and displacement demands.  In this 
report it is assumed that the bridge is analyzed for service conditions and under seismic 
conditions for the design earthquake (DE) as defined in Section 5.6 herein.  For service 
load conditions, the model of analysis should be consistent with the applicable codes and 
specifications (e.g., 2010 AASHTO LRFD Specifications).  For such conditions the 
bearings are expected to function properly without any sliding or roll-over.  The bearing 
model for analysis could consider (a) a realistic force-displacement relation as described 
in Konstantinidis et al (2008) or (b) a simple roller model.  The latter is preferred as it 
will result in conservative prediction of the displacement demands, which in turn, may be 
used to obtain conservative predictions of the lateral force on the basis of the models 
described in Konstantinidis et al (2008).  For seismic DE conditions, the bearing model 
for analysis should be that of a simple roller in order to conservatively estimate the 
displacement demands.  
 
The assessment of adequacy of the bearings follows the approach of Section 5.6 for 
seismic isolators but with modified limits on strain as described below.  The adequacy 
assessment related to rubber shear strains is performed only for the critical interior layers 
where strains are larger.  Conservatively, the exterior layers are assumed to be very stiff 

Frictional 
Interface 

t 

t/2
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in rotation so that the imposed rotation is accommodated within the internal rubber layers 

only.  Accordingly, the shear strain due to rotation is increased by factor /( )r rT T t . 

Service Load Checking 
 
The assumed axial loads and lateral displacements for the service-level checks are 

 Dead or permanent load (unfactored): DP  

 Live load (unfactored): LstP (static component), LcyP  (cyclic component).  When 

analysis cannot distinguish between cyclic and static components of live load, the 
cyclic component shall be taken equal to at least 80% of the total live load. 

 Factored axial load: uP . This is the total load from the relevant service load 

combination of the applicable code, in which any cyclic component is multiplied 
by 1.75.  For example, the factored axial load is calculated as 

1.75u D D L Lst L LcyP P P P      where load factors D  and L are given by 

the applicable code.   When the applicable code is the AASHTO LRFD 
(AASHTO, 2007, 2010), the service load combination is any of the Strength I to 
Strength V combinations in Table 3.4.1-1, although it is expected that 

combination Strength IV with factors 1.50D 
 and 0L 

 and combination 

Strength I with factors 1.25D  and 1.75L   will be controlling. 

 Non-seismic lateral displacement: Sst  (static), Scy  (cyclic)  

 Non-seismic bearing rotation: Sst (static), Scy  (cyclic) 

 
The static component of rotation should include a minimum construction rotation of 
0.005rad unless an approved quality control plan justifies a smaller value.  The 
distinction between static and cyclic components of live load, lateral displacement and 
rotation follows the paradigm of Section 5.6.  The shear strains in the rubber are 
calculated under these loads and displacements and using the equations presented earlier 
in this report. 
 

Shear strain due to compression  

 1
u u
Cs

r

P
f

A GS
     (6-1) 

 
where G is the shear modulus, S is the shape factor, rA  is the reduced rubber area given 

by (5-13) for displacement S Sst Scy      and all other terms are defined above (note 

that equation (5-13) is valid for rectangular bearings of plan dimensions B by L, where B 
is the largest dimension placed perpendicular to the longitudinal bridge axis).  Note that 
the shape factor is as defined in Section 5.1 but for the interior rubber layers which are 
bonded to steel on both sides.  Also, in consistency with AASHTO LRFD Specifications 
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(AASHTO, 2007, 2010), the plan dimensions are defined as the actual plan dimensions 
and not the bonded dimensions (include the thickness of rubber cover).  The coefficient f1 
is given in Tables 5-4 to 5-7 but the designer may opt to use the value f1=1.4 for all cases. 
 

Shear strain due to lateral displacement  

 
1.75

S

Sst Scyu
S

rT


  
   (6-2) 

In equation (6-2), Tr is the total rubber thickness including the thickness of the two 
exterior layers.  

Shear strain due to rotation  

 
2

2

( 1.75 )

( )s

Sst Scyu
r

r

L
f

t T t

 



 


 (6-3) 

Note that equation (6-3) has quantity ( )rT t rather than rT in the denominator (compare 

with equation 5-26) to account for the assumption that the stiffer exterior rubber layers do 
not experience rotation.  The coefficient f2 is given in Tables 5-11 to 5-14 but the 
designer may opt to use the conservative value f2=0.5 for all cases. (Note that the 
dimension L applies for rectangular bearings with axis of rotation parallel to dimension 
B-where B is larger than L. Also, t is the thickness of an interior rubber layer).   
 

Buckling load at service displacement S Sst Scy      

 
'

s

r
cr cr

A
P P

A
   (6-4) 

 
In the above equation crP is calculated using (5-8) and Ar is calculated using (5-13) with 

lateral displacement equal to S Sst Scy     .  For rectangular bearings, the critical load 

is given by  

 

2
' ( )

0.680
(1 / )s

S
cr

r

GBL L
P

L B tT

 



  (6-5) 

 
Equation (6-5) presumes that the bridge is not rigidly fixed against horizontal translation 
in the longitudinal direction.  Buckling in the transverse bridge direction is not considered 
because either the direction is restrained, or if not, longitudinal buckling dominates due to 
the placement of bearings with the long dimension perpendicular to the bridge 
longitudinal axis.   
A bearing design may be considered acceptable if 
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Equation (6-9) is based on a bearing configuration without any holes.  In that case, the 
parameter  is equal to 1.65 unless a fatigue limit state is checked in which =1.1 and the 
minimum yield stress of steel Fy is replaced by the constant amplitude fatigue threshold 
in accordance with the applicable AASHTO LRFD Specifications (AASHTO 2007, 
2010).  Caltrans prefers the use of standard gage 14 (0.075inch) A36 steel shims unless 
equation (6-9) requires a larger thickness. 
 
Note that equations (6-5) and (6-10) are very different than the corresponding equations 
in the AASHTO LRFD Specifications for elastomeric bearings (see AASHTO 2007 or 
2010, equations 14.7.5.3.4-2, 14.7.5.3.4-3 and 14.7.5.3.4-4).  Justification for the use of 
these equations rather than those of AASHTO has been provided in Section 5.6 under 
Service Load Checking.  Specifically,  the use of equations (6-5) and (6-10) is  favored 
because of the following reasons: (a) they have a rational theoretical basis (Kelly, 1993), 
(b) they have been experimentally validated (see Constantinou et al, 2007a for 
description), (c) they account for the effect of lateral deformation, whereas those of 
AASHTO do not, (d) are LRFD–based, whereas those of AASHTO are not, and (e) the 
margin of safety provided is clearly evident (factor  2.0 in equation 6-10) so that 
adjustments to the adequacy assessments equations may be readily done if such a need is 
justified.  Nevertheless, parallel stability checks based on equations (6-5) and (6-10) and 
the AASHTO equations will be provided in the examples that follow.  The examples 
demonstrate that equations (6-5) and (6-10) are more stringent than the corresponding 
AASHTO equations.  Two reasons are responsible for this: (a) account of lateral 
deformation effects through the use of the reduced area in equation (6-10), and (b) use of 
a conservative safety margin limit (factor 2.0 in equation 6-10).  

Note that equations (6-6) and (6-8) are consistent with the equations used for seismic 
isolators in Section 5 but the limits are lower to acknowledge the difference in the quality 
of construction and extent of testing of the bearings.  Also, the limits in equations (6-6) to 
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(6-8) are identical to the corresponding limits in the 2010 AASHTO LRFD Specifications 
(AASHTO, 2010).  The limit of shear strain in equation (6-7) (a) is consistent with 
current AASHTO LRFD Specifications (AASHTO, 2007, 2010), and (b) ensures 
predictability of the lateral force-displacement relation for configurations of bearings 
already tested (Konstantinidis et al, 2008). 

Note that the acceptance criteria do not contain provisions to prevent net uplift of any 
point of the bearing.  This is based on research by Stanton et al (2008) which has shown 
that bearings without external bonded plates may experience uplift without any damaging 
rubber tension. 
 
In addition to equations (6-6) to (6-10), the bearing needs to be checked against slippage 
in service load conditions.  Specifically, the bearing should be checked as follows:  

a. The minimum service load bearing pressure including live load effects 
(0.9 times dead load plus minimum live load if negative or zero live load 
otherwise, divided by rubber area) should be larger than or equal to 200psi 
(1.38MPa). 
 

b.  In order to prevent slippage of the bearing, the lateral bearing force at 
displacement S Sst Scy    

 
should be less than 0.2 times the dead load 

on the bearing PD.  The lateral bearing force may be predicted by  

 
( )

0.2r S
S S S D D

r r

GA GB L
F P P

T T
 

            (6-11) 

The second part of (6-11) is valid for rectangular bearings with B>L.  Also, G is the 
upper bound value of the rubber shear modulus, rA  is the reduced rubber area given by 

(5-13) for displacement S Sst Scy     and Tr is the total rubber thickness, including 

the thickness of the exterior layers.  Note that the force is limited to the value of the 
friction force at the interface of the rubber and the supporting structure (steel or 
concrete), given by the product of the coefficient of friction and compressive load P.  
When checking for slippage, it is appropriate to consider µ=0.2, a conservatively low 
value.  Equation (6-11) may also be used to calculate the force transmitted by the bearing 
for use in the design of the structure above and below the bearing.  For such calculation, 
it is appropriate to consider µ=0.5, a conservatively large value to result in an upper 
bound value for the force. 

Design Earthquake (DE) Checking 
 
The assumed axial loads and lateral displacements for the Design Earthquake (DE) 
checks are as follows.   
 

 Dead load: DP  
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  Seismic live load: 
DESLP .  This is the portion of live load assumed acting in the 

DE.  Per the AASHTO LRFD (AASHTO, 2007, 2010), this portion is determined 
by the Engineer with  recommended values of 0% to 50% of the live load for use 
in the Extreme Event I load combination case .  Herein the seismic live load for 

use in the DE is recommended to be 0.5( )
DE st cySL L LP P P  ; is considered to be 

static load and the associated load factor is unity.  This is consistent with load 
combination case Extreme Event I of the AASHTO LRFD (AASHTO, 2007, 
2010).  Note that the seismic live load is the point-in-time live load acting at the 
time of the earthquake; a value of 0.5 LP  is recommended herein but a smaller 

value might be justified for bridges carrying large live loads. 

 Seismic lateral displacement: 
DEE . 

 Non-seismic lateral displacement: ( )S Sst Scy       

 

The non-seismic lateral displacement is a portion   of S Sst Scy     .  This portion 

is considered to exist simultaneously with the seismic lateral displacement.  Herein the 
value 0.5   is proposed to be consistent with the corresponding adequacy assessment 
procedures for isolators.  Bearing rotation due to earthquake effects is neglected for this 
check.  
 
A bearing design is considered acceptable when the following two conditions apply: 

 
0.5

1.5DE

DE

S E
S

rT


  
   (6-12) 

 0.5 0.4
DES E L          (6-13) 

 
Note that equation (6-13) intends to prevent roll-over of the bearing.  Theoretically, roll-
over occurs when the displacement exceeds 0.5L but the limit has been slightly reduced 
to allow for uncertainties.  If either of equations (6-12) or (6-13) are not satisfied, the 
following options are available: 
 

1) Change the bearing dimensions until equations (6-12) and (6-13) are satisfied. 
 

2) Use instead spherical multidirectional sliding bearings designed per requirements 
of Sections 7 and 8 herein. 
 

3) Test two bearings of each kind under the following conditions. 
 

a. Test at compressive load of 1.2
DED SLP P  (provided that 

DESLP  is 

positive, otherwise at load 1.2 DP ) and then again at compressive load 
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0.9
DED SLP P  (provided that 

DESLP  is negative, otherwise at load 0.9 DP ) 

for three cycles of lateral displacement with amplitude equal to 
0.5

DES E   followed by five minutes of compression at the zero 

displacement position.  The tested bearing shall be capable of sustaining 
the imposed load and history of motion without any damage, roll-off, roll-
over or sliding.  Testing under quasi-static conditions is acceptable.  
Previously conducted tests on similar bearings, loads and motions may be 
utilized following approval by the Engineer.  Similar bearings are defined 
as those being within +/-10% of each relevant dimensional quantity and 
being within +/-5 points for the elastomer durometer hardness.  Test loads 
larger than or equal to 90% of the required upper bound on the load, and 
less than or equal to 110% of the required lower bound value on the load 
are considered acceptable.  The bearing is then qualified for the 
displacement tested successfully without any adjustments to account for 
testing at larger or lesser load.  For example, if the required test load 

1.2
DED SLP P equals 200kip and the required test load  0.9

DED SLP P  

equals 50kip, testing at loads larger than 0.9x200=180kip and at load less 
than 1.1x50=55kip is acceptable.   
 

b. Test at compressive load of 1.2 0.5
DED SLP P  (provided that 

DESLP  is 

positive, otherwise at load 1.2 DP ) and then again at compressive load 

0.9 0.5
DED SLP P  (provided that 

DESLP  is negative, otherwise at load 

0.9 DP ) (
DESLP is defined above for the DE checking) for three cycles of 

lateral displacement with amplitude equal to 0.25 1.5
DES E   followed 

by five minutes of compression at the zero displacement position.  The 
tested bearings shall be capable of sustaining the imposed load and history 
of motion even if significant damage, roll-off, roll-over or sliding occurs.  
Testing under quasi-static conditions is acceptable.  Previously conducted 
tests on similar bearings, loads and motions may be utilized following 
approval by the Engineer.  Similar bearings are defined as those being 
within +/-10% of each relevant dimensional quantity and being within +/-
5 points for the elastomer durometer hardness.  Test loads larger than or 
equal to 90% of the required upper bound on the load, and less than or 
equal to 110% of the required lower bound value on the load are 
considered acceptable.  The bearing is then qualified for the displacement 
tested successfully without any adjustments to account for testing at larger 
or lesser load. 
 

4) Consider the use of seismic isolation. 
 

The bearing lateral force for the design of the structure above or below the bearing shall 
be calculated as  
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( 0.5 )

(0.5 ) (0.5 )DE

DE DE

S Er
DE S E S E D

r r

GB LGA
F P

T T


  
         (6-14) 

The second part of equation (6-14) is valid for rectangular bearings with B>L.  Also, G is 
the upper bound value of the rubber shear modulus,  rA  is the reduced rubber area given 

by equation (5-13) for displacement equal to 0.5
DES E    and Tr is the total rubber 

thickness, including the thickness of the exterior layers.  A value of µ=0.5 should be used 
for this calculation in order to obtain a conservative upper bound on the bearing force for 
use in the design of the structure above and below the bearing. 

Required Bearing Seat Width 
 
The bearings shall be provided with adequate surface (seat width) to accommodate a 
displacement equal to 0.25 1.5

DES E  
 
in all directions, where S  and 

DEE  are defined 

above for the DE checking (that is, the bearings must be placed at distance greater than 
0.25 1.5

DES E    from any edge around the bearing).  If the bearing satisfies the criteria 

of equations (6-12) and (6-13), no further checks or tests are required. 
 
6.3 Example 1 
 
As a design example, consider an elastomeric bearing with the following loads and 
movements under service conditions.  Note that loads, displacements and rotations result 
from analysis, an example of which for service conditions is provided in Section 10 and 
Appendix B herein. 
 
Dead load (un-factored): 200DP kip , Live load (un-factored): 75

stLP kip ,  

25
cyLP kip .   Longitudinal translation: 3

stS inch  ,  0.5
cyS inch        

Rotation: 0.015
stS rad  ,  0.01

cyS rad   

 
The factored load is the maximum between combination Strength I load 

1.75u D D L Lst L LcyP P P P      ( 1.5D  , 1.75L  ) and Strength IV load 

( 1.5D  ): 1.25 200 1.75 75 1.75 1.75 25 457.8uP x x x x kip    , 1.5 200 300uP x kip  .   

Therefore, 457.8uP kip . 

Also, 1.25 200 1.75 75 381.3D D L LstP P x x kip     (for use in equation 6-6). 

Equation (6-6) requires  1 3.0D D L Lst

r

P P
f

A GS

 
    

 

Let S10, G=100psi (nominal value), ( )r SA B L   , 3.0 0.5 3.5
st cyS S S in        . 

Let B=L, where  is in the range of 1.0 to 2.0.  Herein, we start with =1.5 for which 
f1=1.35 and f2=0.47 (see Tables 5-5 and 5-12).  Then equation (6-6) results in Ar ≥ 
171.6in2 and B ≥ 18.9inch, L ≥ 12.6inch. The nominal value of shear modulus is used for 
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adequacy assessment.  Upper and lower bound values are used for calculation of 
displacement and forces.  Herein, we assume that the lower bound value of the shear 
modulus is 90psi and the upper bound is 121psi (variability in shear modulus equal to +/-
10% of the nominal value and aging factor of 1.1). 
 

Equation (6-7) requires 
3.0 0.5

0.5Sst Scy

r rT T

   
   Tr ≥7.0inch.   

 
Select B=20inch, L=13inch, 17 internal rubber layers with t=0.4inch and 2 external 
rubber layers each with 0.2inch thickness for a total Tr=7.2inch. The shape factor is then 
S=(20x13)/(2x(20+13)x0.4)=9.85.  The reduced area is Ar=20x(13-3.5)=190in2. 
 

Equation (6-6):  1

381.3 1.35
2.75 3.0

190 0.1 9.85
D D L Lst

r

x

x x

P P
f

A GS

 
  


       OK         

Equation (6-7):   
3.0 0.5

0.49 0.5
7.2

Sst Scy

rT

   
    OK     

Equation (6-1):    1

457.8 1.35
3.50

190 0.1 9.29
u u
Cs

r

P x
f

A GS x x
      

Equation (6-2):  
1.75 3.0 1.75 0.5

0.54
7.2S

Sst Scyu
S

r

x

T


   
      

Equation (6-3): 
2 2

2

( 1.75 ) 13 (0.015 1.75 0.01)
0.47 0.95

( ) 0.4 (7.2 0.4)s

Sst Scyu
r

r

L x
f

t T t x

 


 
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 
    

Equation (6-8):  3.30 0.54 0.95 4.79 5.0
s s s

u u u
C S r            OK 

 

Equation (6-9):   
1.65 0.4

0.047
190

1.08 2 1.08 36 2
457.8

s
r

y
u

t x
t inch

A
F x x

P


  
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Provide 18 steel shims, A36 steel, gage 14 (t=0.075inch).  The total bearing height is 
18x0.075+7.2=8.55inch. 
 

Equation (6-5): 
2 2

' ( ) 0.68 0.1 20 13 (13 3.5)
0.680 459.5

(1 / ) (1 13/ 20) 0.4 7.2s

S
cr

r

GBL L x x x
P kip

L B tT x x

  
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 
       

 
Equation (6-10):  

'
459.5 459.5

1.08 2.0
( ) 1.25 200 1.75(75 25) 425

scr

D D L Lst Lcy

P

P P P x 
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   
 NG 

 
To increase the buckling load the plan dimensions need to be increased or the rubber 
layer thickness needs to be reduced.  The latter is unacceptable for regular bridge 
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bearings as the thickness is already small.  Inspecting equation (6-5), it is apparent that 
increase of dimension L will be most effective.   
 
Accordingly, we select a new trial design with B=21inch, L=16inch, 17 internal rubber 
layers with t=0.4inch and 2 external rubber layers each with 0.2inch thickness for a total 
Tr=7.2inch.  There is no need to check the equations for strain limits and steel shim 
thickness as the bearing certainly meets the acceptance criteria.  Nevertheless this checks 
are performed below for completeness.  Only equation (6-10) needs to be checked again. 
 
For the trial design, S= (21x16)/(2x(21+16)x0.4)=11.35 and Ar=21x(16-3.5)=262.5in2.  
Also, for this value of S, f1=1.35 (Table 5-5) and f2=0.47 (Table 5-12).   
 

Equation (6-1): 1

457.8 1.35
2.07

262.5 0.1 11.35
u u
Cs

r

P x
f

A GS x x
       

Equation (6-2):  
1.75 3.0 1.75 0.5

0.54
7.2S

Sst Scyu
S
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T


   
      

Equation (6-3): 
2 2

2

( 1.75 ) 16 (0.015 1.75 0.01)
0.47 1.44

( ) 0.4 (7.2 0.4)s
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f

t T t x
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 
    

Equation (6-8):  2.07 0.54 1.44 4.05 5.0
s s s

u u u
C S r            OK 

 

Equation (6-5): 
2 2

' ( ) 0.68 0.1 21 16 (16 3.5)
0.680 900.5

(1 / ) (1 16 / 21) 0.4 7.2s

S
cr

r

GBL L x x x
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L B tT x x
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 
       

 

Equation (6-10):  
'

900.5
2.1 2.0

( ) 425
scr

D D L Lst Lcy

P

P P P 
  

 
  OK 

 
The bearing needs to be also checked for slippage.  Specifically: 
 

a. The minimum service load bearing pressure including live load effects 
(0.9 times dead load plus minimum live load if negative or zero live load 
otherwise, divided by rubber area) should to be larger than or equal to 
200psi (1.38MPa). 

0.9 0.9 200000
536 200

21 16
DP x

psi psi
BL x

    

b.  In order to prevent slippage of the bearing, the lateral bearing force at 
displacement Sst Scy    

 
should be less than 0.2 times the dead load on 

the bearing PD.  The lateral force transmitted by the bearings is given by 
equation (6-11) where the upper bound value of shear modulus is used for 
conservatism: 
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( ) 0.121 21 (16 3.5)
3.5 15.4

7.2

0.2 0.2 200 40

r S
S S S

r r

D

GA GB L x x
F x kip

T T

P x kip

  
     

    

 
Since both conditions are satisfied, the bearing is safe against slippage. 
 
For seismic conditions, the bearing is checked on the basis of equations (6-12) and (6-
13).   

Equation (6-12):  
0.5

1.5DES E

rT

  
 .  Therefore, 1.5 7.2 0.5 3.5 9.05

DEE x x inch     

Equation (6-13):  0.5 0.4
DES E L    .  Therefore, 0.4 16 0.5 3.5 4.65

DEE x x inch     

 
The bearing is acceptable for seismic displacement 4.65

DEE inch   without testing. 

Design calls for B=21inch, L=16inch, 17 internal rubber layers with t=0.4inch and 2 
external rubber layers each with 0.2inch thickness for a total rubber thickness Tr=7.2inch.  
Provide 18 steel shims, A36 steel, gage 14 (t=0.075inch).  The total bearing height is 
18x0.075+7.2=8.55inch.  Moreover, the bearing needs to be provided with adequate seat 
width to accommodate a displacement equal to 0.25 1.5 0.25 3.5 1.5 4.65

DES E x x      

 7.85inch , say 8inch in the longitudinal direction.  For the transverse direction, for 
which  0S   , the seat width should be1.5 1.5 4.65 7

DEE x inch   .  Therefore, the 

21in by 16in bearing should be provided with a seat of (21+8+8) by (16+7+7) = 37in by 
30in provided that the seismic displacement does not exceed 4.65inch. 
 
6.4 Example 2 
 
Consider the elastomeric bearing of Example 1 but with the requirement that the rubber 
layer thickness is t=0.5inch-exactly that of the tested bearings (Konstantinidis et al, 
2008).  
 
The loads and movements under service conditions are: 
 
Dead load (un-factored): 200DP kip , Live load (un-factored): 75

stLP kip , 

25
cyLP kip .  Longitudinal translation: 3

stS inch  ,  0.5
cyS inch        

Rotation: 0.015
stS rad  ,  0.01

cyS rad     

The factored load is the maximum between combination Strength I load 

1.75u D D L Lst L LcyP P P P      ( 1.5D  , 1.75L  ) and Strength IV load 

( 1.5D  ): 1.25 200 1.75 75 1.75 1.75 25 457.8uP x x x x kip    , 1.5 200 300uP x kip  .   

Therefore, 457.8uP kip . 

Also, 1.25 200 1.75 75 381.3D D L LstP P x x kip     (for use in equation 6-6). 
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We follow the same steps as in example 1 but with the knowledge that the stability check 
controls. 

Equation (6-7) requires 
3.0 0.5

0.5Sst Scy

r rT T

   
   Tr ≥7.0inch.   

 
Select 13 internal rubber layers with t=0.5inch and 2 external rubber layers each with 
0.25inch thickness for a total Tr=7.0inch. 
 

Equation (6-6) requires  1 3.0D D L Lst

r

P P
f

A GS

 
    

 

Let f1=1.4, S10, G=100psi (nominal value), ( )r SA B L   , 

3.0 0.5 3.5
st cyS S S in        . 

Let B=1.5L, then equation (6-1) results in Ar ≥ 177.9in2 and B ≥ 19.2inch, L ≥ 12.8inch. 
The nominal value of shear modulus is used for adequacy assessment.  Upper and lower 
bound values are used for calculation of displacement and forces.  Herein, we assume that 
the lower bound value of the shear modulus is 90psi and the upper bound is 121psi 
(variability in shear modulus equal to +/-10% of the nominal value and aging factor of 
1.1).  Experience gained in example 1 calls for plan dimensions that are larger than those 
of example 1. 
 
Select B=21inch, L=17inch.  The shape factor is then S=(21x17)/(2x(21+17)x0.5)=9.39.  
The reduced area is Ar=21x(17-3.5)=283.5in2.  Based on this value of shape factor and 
bearing aspect ratio L/B, f1=1.3 (Table 5-5) and f2=0.46 (Table 5-12).   
 

Equation (6-6):  1

381.3 1.3
1.86 3.0

283.5 0.1 9.39
D D L Lst

r

x

x x

P P
f

A GS

 
  


       OK         

Equation (6-7):   
3.0 0.5

0.50 0.5
7.0

Sst Scy

rT

   
    OK        

Equation (6-1):    1

457.8 1.3
2.24

283.5 0.1 9.39
u u
Cs

r

P x
f

A GS x x
    

 

Equation (6-2):  
1.75 3.0 1.75 0.5

0.55
7.0S

Sst Scyu
S

r

x

T


   
      

Equation (6-3): 
2 2

2

( 1.75 ) 17 (0.015 1.75 0.01)
0.46 1.33

( ) 0.5 (7.0 0.5)s

Sst Scyu
r

r

L x
f

t T t x

 


 
    

 
    

Equation (6-8):  2.24 0.55 1.33 4.12 5.0
s s s

u u u
C S r            OK 

Equation (6-9):   
1.65 0.5

0.037
283.5

1.08 2 1.08 36 2
457.8

s
r

y
u

t x
t inch

A
F x x

P


  

 
 



113 
 

Provide 14 steel shims, A36 steel, gage 14 (t=0.075inch).  The total bearing height is 
14x0.075+7.0=8.05inch. 
 

Equation (6-5): 
2 2

' ( ) 0.68 0.1 21 17 (17 3.5)
0.680 879.7

(1 / ) (1 17 / 21) 0.5 7.0s

S
cr

r

GBL L x x x
P kip

L B tT x x

  
  

 
       

 
Equation (6-10):  

  
'

879.7 879.7
2.07 2.0

( ) 1.25 200 1.75(75 25) 425
scr

D D L Lst Lcy

P

P P P x 
   

   
 OK 

 
For demonstration, we check the stability of the designed bearing on the basis of the 
AASHTO LRFD Specifications (equations 14.7.5.3.4-2, 14.7.5.3.4-3 and 14.7.5.3.4-4; 
AASHTO 2007, 2010).  Note the alternate use of the AASHTO and our symbols in the 
equations below. 
 

Equation 14.7.5.3.4.-2: 

7
1.921.92 1.92

17 0.489
2.0 2.0 2 17

1 1 1
21

rt rh T
L LA

L L x
W B

   
  

 

 
Equation 14.7.5.3.4-3: 

2.67 2.67 2.67
0.195

17
( 2.0)(1 ) ( 2.0)(1 ) (9.39 2.0)(1 )

4.0 4.0 4 21i

B
L L

S S
W B x

   
     

 

 

Equation 14.7.5.3.4-4:  
2

i
s

GS

A B
 


   or  

 
 

2
D Lcy Lst i

P P P GS

WL A B


 


  or  

 
200 25 75 0.1 9.39

0.840 1.2
21 17 2 2 0.489 0.195

iGS x
ksi ksi

x A B x


 
  

 
  OK 

 
The bearing needs to be also checked for slippage.  Specifically: 
 

a. The minimum service load bearing pressure including live load effects 
(0.9 times dead load plus minimum live load if negative or zero live load 
otherwise, divided by rubber area) should to be larger than or equal to 
200psi (1.38MPa). 
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0.9 0.9 200000
504 200

21 17
DP x

psi psi
BL x

    

b.  In order to prevent slippage of the bearing, the lateral bearing force at 
displacement Sst Scy    

 
should be less than 0.2 times the dead load on 

the bearing PD.  The lateral force transmitted by the bearings is given by 
equation (6-11) where the upper bound value of shear modulus is used for 
conservatism: 

( ) 0.121 21 (17 3.5)
3.5 17.2

7.0

0.2 0.2 200 40

r S
S S S

r r

D

GA GB L x x
F x kip

T T

P x kip

  
     

    

 
Since both conditions are satisfied, the bearing is safe against slippage. 
 
For seismic conditions, the bearing is checked on the basis of equations (6-12) and (6-
13).   

Equation (6-12):  
0.5

1.5DES E

rT

  
 .  Therefore, 1.5 7.0 0.5 3.5 8.75

DEE x x inch     

Equation (6-13):  0.5 0.4
DES E L    .  Therefore, 0.4 17 0.5 3.5 5.05

DEE x x inch     

The bearing is acceptable for seismic displacement 5.05
DEE inch   without testing. 

Therefore, the design calls for B=21inch, L=17inch, 13 internal rubber layers with 
t=0.5inch and 2 external rubber layers each with 0.25inch thickness for a total rubber 
thickness Tr=7.0inch.  Provide 14 steel shims, A36 steel, gage 14 (t=0.075inch).  The 
total bearing height is 14x0.075+7.0=8.05inch.  Moreover, the bearing needs to be 
provided with adequate seat width to accommodate a displacement equal 
to 0.25 1.5 0.25 3.5 1.5 5.05 8.45

DES E x x inch      , say 9inch in the longitudinal 

direction and0.25 1.5 0 1.5 5.05 7.58
DES E x inch      , say 8inch in the transverse 

direction. The 21in by 17in bearing requires a seat of (21+9+9) by (17+8+8) = 39in by 
33in provided that the seismic displacement does not exceed 5.05in. 
 
6.5 Example 3 

 
The loads and movements under service conditions are: 
 
Dead load (un-factored): 86DP kip , Live load (un-factored): 0

stLP  , 90
cyLP kip  

Longitudinal translation: 0.6
stS inch  ,  0

cyS        

Rotation: 0.02
stS rad  ,  0.01

cyS rad     

The factored load (combination Strength I governs) is 

  1.75u D D L Lst L LcyP P P P      
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1.25 86 0 1.75 1.75 90 383.1uP x x x kip     
Also, 1.50 86 1.75 0 129D D L LstP P x x kip      (for use in equation 6-6).   

Note that in this equation we used 1.50D  as it controls (live load effect is zero so that 

Strength IV Load Combination of AASHTO controls). 

Equation (6-7) requires 
0.6 0

0.5Sst Scy

r rT T

   
   Tr ≥1.2inch.  This limit is very 

small as it is controlled by a small translational displacement.  Such a small rubber 
thickness will result in large strains due to bearing rotation.  Accordingly, we start a trial 
design by selecting 7 internal rubber layers with t=0.5inch and 2 external rubber layers 
each with 0.25inch thickness for a total Tr=4.0inch.   
 

Equation (6-6) requires  1 3.0D D L Lst

r

P P
f

A GS

 
    

 

Use factors f1=1.22 and f2= 0.45 (for a nearly square bearing-see Tables 5-5 and 5-12), 
S7, G=100psi (nominal value), ( )r SA B L   , 0.6 0 0.6

st cyS S S in        .   

Herein, we assume that the lower bound value of the shear modulus is 90psi and the 
upper bound is 121psi (variability in shear modulus equal to +/-10% of the nominal value 
and aging factor of 1.1). The nominal value of shear modulus is used for adequacy 
assessment.  Upper and lower bound values are used for calculation of displacement and 
forces.   
  
Let BL, then equation (6-6) results in Ar ≥ 76.8in2.  This is too small due to the small 
value of load D D L LstP P   (zero value of static live load).  Accordingly, we start with 

trial plan dimensions B=16inch, L=15inch.  The shape factor is then 
S=(16x15)/(2x(16+15)x0.5)=7.74.  The reduced area is Ar=16x(15-0.6)=230.4in2. 
 

Equation (6-6):  1

129 1.25
0.90 3.0

230.4 0.1 7.74
D D L Lst

r

x

x x

P P
f

A GS

 
  


       OK         

Equation (6-7):   
0.6 0

0.15 0.5
4.0

Sst Scy

rT

   
    OK        

Equation (6-1):    1

383.1 1.22
2.62

230.4 0.1 7.74
u u
Cs

r

P x
f

A GS x x
      

Equation (6-2):  
1.75 0.6 1.75 0

0.15
4.0S

Sst Scyu
S

r

x

T


   
      

Equation (6-3): 
2 2

2

( 1.75 ) 15 (0.02 1.75 0.01)
0.45 2.17

( ) 0.5 (4.0 0.5)s

Sst Scyu
r

r

L x
f

t T t x

 


 
    

 
    

Equation (6-8):  2.62 0.15 2.17 4.94 5.0
s s s

u u u
C S r            OK 

 



116 
 

Note that on the basis of equation (6-8) the selected plan dimensions are just acceptable 
(the reader may realize that we have first tried B=L=15inch but it did not satisfy equation 
6-8). 
 

Equation (6-9):   
1.65 0.5

0.038
230.4

1.08 2 1.08 36 2
381.3

s
r

y
u

t x
t inch

A
F x x

P


  

 
 

Provide 8 steel shims, A36 steel, gage 14 (t=0.075inch).  The total bearing height is 
8x0.075+4.0=4.6inch. 
 

Equation (6-5): 
2 2

' ( ) 0.68 0.1 16 15 (15 0.6)
0.680 909.7

(1 / ) (1 15/16) 0.5 4.0s

S
cr

r

GBL L x x x
P kip

L B tT x x

  
  

 
       

 

Equation (6-10):  
'

909.7
2.37 2.0

( ) 383.1
scr

D D L Lst Lcy

P

P P P 
  

 
 OK 

 
For demonstration, we check the stability of the designed bearing on the basis of the 
AASHTO LRFD Specifications (equations 14.7.5.3.4-2, 14.7.5.3.4-3 and 14.7.5.3.4-4; 
AASHTO 2007, 2010).  Note the alternate use of the AASHTO and our symbols in the 
equations below. 
 

Equation 14.7.5.3.4.-2: 

4
1.921.92 1.92

15 0.302
2.0 2.0 2 15

1 1 1
16

rt rh T
L LA

L L x
W B

   
  

 

 
Equation 14.7.5.3.4-3: 

2.67 2.67 2.67
0.222

15
( 2.0)(1 ) ( 2.0)(1 ) (7.74 2.0)(1 )

4.0 4.0 4 16i

B
L L

S S
W B x

   
     

 

 

Equation 14.7.5.3.4-4:  
2

i
s

GS

A B
 


   or  

 
 

2
D Lcy Lst i

P P P GS

WL A B


 


  or  

 
86 90 0.1 7.74

0.733 2.026
16 15 2 2 0.302 0.222

iGS x
ksi ksi

x A B x



  

 
  OK 

 
The bearing needs to be also checked for slippage.  Specifically: 
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a. The minimum service load bearing pressure including live load effects 

(0.9 times dead load plus minimum live load if negative or zero live load 
otherwise, divided by rubber area) should to be larger than or equal to 
200psi (1.38MPa). 

0.9 0.9 86000
322 200

16 15
DP x

psi psi
BL x

    

b.  In order to prevent slippage of the bearing, the lateral bearing force at 
displacement Sst Scy    

 
should be less than 0.2 times the dead load on 

the bearing PD.  The lateral force transmitted by the bearings is given by 
equation (6-11) where the upper bound value of shear modulus is used for 
conservatism: 

( ) 0.121 16 (15 0.6)
0.6 4.2

4.0

0.2 0.2 86 17.2

r S
S S S

r r

D

GA GB L x x
F x kip

T T

P x kip

  
     

    

 
Since both conditions are satisfied, the bearing is safe against slippage. 
 
For seismic conditions, the bearing is checked on the basis of equations (6-12) and (6-
13).   
 

Equation (6-12):  
0.5

1.5DES E

rT

  
 .  Therefore, 1.5 4.0 0.5 0.6 5.7

DEE x x inch     

Equation (6-13):  0.5 0.4
DES E L    .  Therefore, 0.4 15 0.5 0.6 5.7

DEE x x inch     

 
The bearing is acceptable for seismic displacement 5.7

DEE inch   without testing. 

The design calls for B=16inch, L=15inch, 7 internal rubber layers with t=0.5inch and 2 
external rubber layers each with 0.25inch thickness for a total rubber thickness 
Tr=4.0inch.  Provide 8 steel shims, A36 steel, gage 14 (t=0.075inch).  The total bearing 
height is 8x0.075+4.0=4.6inch.  Moreover, the bearing needs to be provided with 
adequate seat width to accommodate a displacement equal 
to 0.25 1.5 0.25 0.6 1.5 5.7 8.7

DES E x x inch      , say 9inch. 

 
6.6 Example 4 

 
This example is identical to Example 3 but the seismic displacement is given as 7.0inch.  
This is larger than the capacity of the bearing designed in Example 3, so that a new 
bearing needs to be designed.   
 
The loads and movements under service conditions and the seismic displacement are: 
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Dead load (un-factored): 86DP kip , Live load (un-factored): 0
stLP  , 90

cyLP kip  

Longitudinal translation: 0.6
stS inch  ,  0

cyS        

Rotation: 0.02
stS rad  ,  0.01

cyS rad     

Seismic displacement in the DE: 7.0
DEE inch   

The factored load (combination Strength I governs) is  1.75u D D L Lst L LcyP P P P      

1.25 86 0 1.75 1.75 90 383.1uP x x x kip     
Also, 1.50 86 1.75 0 129D D L LstP P x x kip      (for use in equation 6-6).   

Note that in this equation we used 1.50D  as it controls (live load effect is zero so that 

Strength IV Load Combination of AASHTO controls). 
 
Moreover, 0.6

st cyS S S in      .  It is required that the rubber layer thickness is 

0.5inch. 
 
Let G=100psi (nominal value).  Upper and lower bound values are used for calculation of 
displacement and forces.  Herein, we assume that the lower bound value of the shear 
modulus is 90psi and the upper bound is 121psi (variability in shear modulus equal to +/-
10% of the nominal value and aging factor of 1.1). 

Equation (6-7) requires 
0.6 0

0.5Sst Scy

r rT T

   
   Tr ≥ 1.2inch.   

Equation (6-12) requires
0.5 0.5 0.6 7

1.5DE

DE

S E
S

r r

x

T T


   
    Tr ≥ 4.87inch.   

Equation (6-13) requires 0.5 0.5 0.6 7 0.4
DES E x L       L≥ 18.25inch. 

 
Select B=L=18.25inch, 9 internal rubber layers with t=0.5inch and 2 external rubber 
layers each with 0.25inch thickness for a total Tr=5.0inch. The shape factor is then 
S=(18.25x18.25)/(2x(18.25+18.25)x0.5)=9.13. Factor f1=1.24 (table 5-5) and factor 
f2=0.45 (Table 5-12).  The reduced area is Ar=18.25x(18.25-0.6)=322.1in2.   
 

Equation (6-6):  1

129 1.24
0.54 3.0

322.1 0.1 9.13
D D L Lst

r

x

x x

P P
f

A GS

 
  


      OK 

Equation (6-7):   
0.6 0

0.12 0.5
5.0

Sst Scy

rT

   
    OK        

Equation (6-1): 1

383.1 1.24
1.62

322.1 0.1 9.13
u u
Cs

r

x

x x

P
f

A GS
           

Equation (6-2):  
1.75 0.6 1.75 0

0.12
5.0S

Sst Scyu
S

r

x

T


   
      
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Equation (6-3): 
2 2

2

( 1.75 ) 18.25 (0.02 1.75 0.01)
0.45 2.50

( ) 0.5 (5.0 0.5)s

Sst Scyu
r

r

L x
f

t T t x

 


 
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 
    

Equation (6-8):  1.62 0.12 2.50 4.24 5.0
s s s

u u u
C S r            OK 

 

Equation (6-9):   
1.65 0.5

0.03
322.1

1.08 36 21.08 2
383.1

s
r

y
u

t x
t inch

A
x xF

P


  
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Provide 11 steel shims, A36 steel, gage 14 (t=0.075inch).   The total bearing height is 
11x0.075+5.0=5.825inch. 
 
Equation (6-5): 

2 2
' 0.680 ( ) 0.68 0.1 18.25 18.25 (18.25 0.6)

1459
(1 / ) (1 18.25 /18.25) 0.5 5.0s

S
cr

r

GBL L x x x
P kip

L B tT x x

  
  

 
       

 

Equation (6-10): 

'
1459

3.8 2.0
383.1

scr

u

P

P
      OK 

No need to check equations (6-12) and (6-13) as dimensions Tr and L were selected to 
satisfy those equations. 
 
For demonstration, we check stability of the designed bearing on the basis of the 
AASHTO LRFD Specifications (equations 14.7.5.3.4-2, 14.7.5.3.4-3 and 14.7.5.3.4-4; 
AASHTO 2007, 2010).  Note the alternate use of the AASHTO and our symbols in the 
equations below. 

Equation 14.7.5.3.4.-2: 

5
1.921.92 1.92

18.25 0.304
2.0 2.0 2 18.25

1 1 1
18.25

rt rh T
L LA

L L x
W B

   
  

 

Equation 14.7.5.3.4-3: 
2.67 2.67

( 2.0)(1 ) ( 2.0)(1 )
4.0 4.0i

B
L L

S S
W B

  
   

 

2.67
0.192

18.25
(9.13 2.0)(1 )

4 18.25x


 

 

Equation 14.7.5.3.4-4:  
2

i
s

GS

A B
 


   or  

2
D Lcy Lst i

P P P GS

WL A B


 


  or 
 

 
86 90 0.1 9.13

0.528 2.195
18.25 18.25 2 2 0.304 0.192

iGS x
ksi ksi

x A B x



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 
  OK 

 
The bearing needs to be also checked for slippage.  Specifically: 
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a. The minimum service load bearing pressure including live load effects 
(0.9 times dead load plus minimum live load if negative or zero live load 
otherwise, divided by rubber area) should to be larger than or equal to 
200psi (1.38MPa). 

0.9 0.9 86000
232 200

18.25 18.25
DP x

psi psi
BL x

    

b.  In order to prevent slippage of the bearing, the lateral bearing force at 
displacement Sst Scy    

 
should be less than 0.2 times the dead load on 

the bearing PD.  The lateral force transmitted by the bearings is given by 
equation (6-11) where the upper bound value of shear modulus is used for 
conservatism: 

( )

0.121 18.25 (18.25 0.6)
0.6 4.7 0.2 0.2 86 17.2

5.0

r S
S S S

r r

D

GA GB L
F

T T

x x
x kip P x kip

 
    


     

Since both conditions are satisfied, the bearing is safe against slippage.  
   
The design calls for B=18.25inch, L=18.25inch, 9 internal rubber layers with t=0.5inch 
and 2 external rubber layers each with 0.25inch thickness for a total rubber thickness 
Tr=5.0inch.  Provide 11 steel shims, A36 steel, gage 14 (t=0.075inch).  The total bearing 
height is 11x0.075+5.0=5.825inch.  Moreover, the bearing needs to be provided with 
adequate seat width to accommodate a displacement equal 
to 0.25 1.5 0.25 0.6 1.5 7.0 10.65

DES E x x inch      , say 11inch. 
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SECTION 7 
SOME ASPECTS OF BEHAVIOR OF PTFE SPHERICAL BEARINGS 

 
7.1 Introduction 
 
This section presents a collection of material on the properties and behavior of PTFE 
spherical bearings that are used either as large displacement capacity expansion bridge 
bearings (flat sliding bearings) or as fixed bridge bearings.  They can also be used in 
combination with elastomeric bearings in seismic isolation systems.   Spherical bearings 
and their one-directional versions of cylindrical bearings have large capacity to 
accommodate rotation with very little resistance to the application of moment.  This is in 
contrast to the behavior of pot and disk bearings that exhibit high resistance to rotational 
moment and limited ability to rotate (Stanton et al, 1999).  Accordingly, spherical 
bearings are preferred either as bridge expansion bearings or as fixed bridge bearings.  
The similarity of the PTFE spherical multidirectional bearings to the single Friction 
Pendulum seismic isolation bearings also enhances interest in these bearings. 
 
The material presented in this section is a brief description of spherical bearings, their 
structural components and their operation principles. The scope of the presentation is the 
interpretation of the design criteria and tools that are currently in force and are used in 
practice. In brief, current design considerations are dealing with:  

1) PTFE-steel interface (friction values, proper operation, sustainability, 
compressive strength). 

2) Stability (geometry and load limitations to ensure stability).  
3) Load eccentricity and its implications.  

 
The design requirements summarized herein are from three sources: AASHTO LRFD 
Specifications (2007, 2010), Caltrans (1994) and European Standard (2004).  
 
7.2 Types of PTFE Spherical Bearings 
 
Fixed Spherical Bearings 
 
Fixed spherical bearings allow rotation about any axis and prevent vertical movement. 
They exhibit a behavior that is typically modeled as a three-dimensional pin connection.  
Fixed spherical bearings consist of a steel spherical convex backing plate sliding on a low 
friction surface on a spherical concave backing plate.  Figure 7-1, which has been adapted 
from Caltrans (1994), shows a fixed spherical bearing with a concave plate capable of 
rotation on top of a convex plate. The curved contact surface has low friction which is 
achieved by means of woven PTFE or other material of similar properties that is bonded 
to the concave surface and is in contact with a stainless steel convex plate or is in contact 
with a stainless steel plate that is welded to a matching convex backing plate. Note that 
the spherical bearing may be also configured with the concave plate facing down rather 
than up, and have exactly the same behavior as the bearing of Figure 7-1. 
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A topic of concern is the ability of fixed spherical bearings to resist horizontal loads. The 
curved sliding interface is a compression-only surface incapable of resisting tension and 
the only restraint against lateral loading is the geometric restraint offered by the curved 
surface. Thus, the horizontal to vertical load ratio is a critical design constraint for these 
bearings.  The stability of the bearing at a given horizontal to vertical load ratio depends 
on the ratio of the curvature radius to the plan dimension of the curved contact surface. 
The latter ratio also affects the pressure distribution at the contact interface (Koppens, 
1995).  

 
FIGURE 7-1 Fixed Spherical Bearing (Caltrans, 1994)  
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Sliding Spherical Bearings 
 
There are three types of sliding PTFE spherical bearings depending on restraints imposed 
on translation.  Sliding capabilities are provided by incorporating a plane sliding interface 
at the top of the bearing. This flat sliding surface is achieved by use of PTFE or other 
material of similar properties in contact with stainless steel, where the stainless steel plate 
is located above the PTFE so that accumulated dirt and dust falls off during sliding.  
Unidirectional (or guided) bearings permit sliding in one direction and are restrained 
against translation in the orthogonal direction by a guiding system (internal or external).  
Multidirectional (or unguided) spherical bearings allow horizontal movements in any 
direction.  Caltrans (1994) does not consider guided bearings for use by the Division of 
Structures due to problems experienced with this kind of bearings in service. Such 
bearings are not considered herein.  Figure 7-2 shows the construction of a 
multidirectional spherical bearing.  Note that the drawing shows that the sliding 
interfaces consist of woven PTFE.  This is the preferred material for use in applications 
of these bearings in California.  Multidirectional sliding spherical bearings are typically 
modeled as bi-directional rollers for analysis of conventional bridges.  When used as 
elements of seismic isolation systems, these bearings are modeled as bi-directional 
frictional elements (Constantinou et al, 2007a). 
 

 
FIGURE 7-2 Multidirectional PTFE Sliding Spherical Bearing (Caltrans, 1994)  
 
 
7.3 Design Considerations for Spherical Bearings 
 
In this section, a brief description of the applicable design procedures for spherical 
bearings per Caltrans (1994), European Standard (2004) and AASHTO (2007, 2010) is 
presented. Wherever necessary, explanations and comments are provided. Figure 7-3 
portrays and defines the various notations used throughout Table 7-1, which summarizes 
design requirements and complements Figure 7-3 in defining quantities. Note that the 
notation used in Figure 7-3 and Table 7-1 follows that of Caltrans (1994) with some 
modifications for consistency with the AASHTO LRFD Specifications (2007, 2010).   

Flat Sliding Interface Spherical Sliding Interface 
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FIGURE 7-3 Definition of Geometric Parameters of Spherical Bearings 
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TABLE 7-1 Summary of Design Requirements 
 

Design 
Requirement 

AASHTO LRFD Bridge 
Design Specs, 2007, 2010 

CALTRANS 
(June 1994) 

European 
Standard, EN 
1337-7:2004 

Prevention of 
Uplift at 
Spherical 
Sliding 
Surface 

– 

Uplift must not occur 
under any 

combination of loads 
and corresponding 

rotation 

8
m

t

D
e   

(total eccentricity 
of normal load – 
see Section 2.5.1) 

Resistance to 
Compression 




4

2
mD

P   

– PTFEAP   – 

P =factored compressive 
load 

 

mD =diameter of the 

projection of the loaded 
surface of the bearing in 

the horizontal plane 
(denoted  as L) 

 
 =maximum permissible 
average contact stress at 
the strength limit state  

P =maximum  
compressive load 

considering all 
appropriate load 

combinations 
 

mD =diameter of the 

projection of the 
loaded surface of the 

bearing in the 
horizontal plane 

 
 =maximum 

permissible average 
compressive stress 

 

PTFEA =PTFE area of 
flat sliding surface 

P =design axial 
force at ultimate 

limit state 
 

mD = diameter of 

projected curved 
sliding surface 

 





m

kf
  

where 
recommended m  

is 1.4,   is a 
reduction 

coefficient and kf  

is the characteristic 
value of 

compressive 
strength for PTFE 

sheets 

Dm is the diameter of the projected sliding surface (denoted as L in 2007 or 2010 AASHTO LRFD, Figure 
C14.7.3.3.-1). 
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TABLE 7-1 Summary of Design Requirements (cont’d) 

Design 
Requirement 

AASHTO LRFD Bridge 
Design Specs, 2007, 2010 

CALTRANS 
(June 1994) 

European 
Standard, EN 
1337-7:2004 

Design 
Horizontal 

Force 
(Largest 

Applicable) 

PH   – 

H =lateral load from 
applicable strength and 

extreme load 
combinations 

 
 =coefficient of friction 

 
P =factored compressive 

force 

H =maximum 
horizontal load on the 

bearing or restraint 
considering all 

appropriate load 
combinations 

 
 

 =coefficient of 
friction 

 
P =maximum 

compressive load 
considering all 

appropriate load 
combinations 

– 

Design 
Moment 

(Largest) for 
Bridge 

Substructure 
and 

Superstructur
e 

PRM   – 

R =radius of curvature – 
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TABLE 7-1 Summary of Design Requirements (cont’d)

Design 
Requirement 

AASHTO LRFD Bridge 
Design Specs, 2007, 2010 

CALTRANS 
(June 1994) 

European 
Standard, EN 
1337-7:2004 

Resistance to 
Lateral Load 
(see Section 

7.1) 

 2 2sin sinPTFEH R         – 

1tan
D

H

P
   
  

 
 – 

DP = service compressive 
load due to permanent 

loads 

PTFE = maximum average 
contact stress at the 
strength limit state 

permitted on the PTFE 

DP = compressive load 
due to permanent loads 

PTFE = the maximum 
average contact stress 
permitted on the PTFE 

– 

Rotation 

Strength limit state 
rotation   is the sum of: 

a) rotations due to 
applicable factored loads, 

b) maximum rotation 
caused by fabrication and 
installation tolerances (to 

be taken as 0.005rad 
unless an approved quality 

control plan justifies a 
smaller value), c) 

allowance for 
uncertainties (to be taken 

as 0.005rad unless an 
approved quality control 
plan justifies a smaller 

value) 

Design rotation   is 
the sum of: 

a) greater of either 
rotations due to all 
applicable factored 

loads or rotation at the 
service limit state, b) 
maximum rotation 

caused by fabrication 
and installation 

tolerances (to be taken 
0.01rad unless an 
approved quality 

control plan justifies a 
smaller value, c) 

allowance for 
uncertainties (to be 

taken 0.01rad unless an 
approved quality 

control plan justifies a 
smaller value) 

0.015  rad 

– 

Angle   of 
Bearing  

– –    30° 

Angle  is termed the subtended semi-angle of the curved surface (see Figure 7-13). 
Angle  is the design rotation angle. 
Angle  is the angle between the vertical and horizontal loads acting on the bearing. 
Stress PTFE is the denoted as SS in AASHTO LRFD Specifications (2007, 2010). 
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TABLE 7-1 Summary of Design Requirements (cont’d) 

CALTRANS MEMO TO DESIGNERS, JUNE 1994 

Minimum 
Angle 

Required to 
Prevent Uplift 

1tan
D

H

P
   
  

 
 

See Figure 7-3 
Maximum 
Allowable 
Radius of 
Concave 
Bearing 
Sliding  
Surface 

 2sin
mD

R


  

(if limit exceeds 36”, use 36” 
as limit) 

Minimum 
Angle of 
Concave 
Bearing 
Surface 

     

The minimum design rotation capacity 
for spherical bearings,  , is usually 2 
degrees (0.035rad) and should include 

rotations from dead load, live load, 
camber changes, construction 

tolerances and erection sequences 
Minimum 
Concave 

Bearing Pad 
Diameter 
















 

R

D
RDB m

act

2/
sin2 1  

See Figure 7-3 

Minimum 
Metal Depth 
of Concave 

Surface 

R

DBact

2
  

cosRY   

PTFEtYRM   
Minimum 

Metal 
Thickness at 
Center Line 

0.75 inch 

Maximum 
Metal 

Thickness 
max min 0.125T T M inch    
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TABLE 7-1 Summary of Design Requirements (cont’d) 

CALTRANS MEMO TO DESIGNERS, JUNE 1994 

Length and 
Width of 

Concave Plate 
0.75cp mL D inch   

Minimum 
Angle of 
Convex 
Surface 

     

See Figure 7-3 

Minimum 
Convex 

Chord Length 
sin2RCm   

Height of 
Convex 

Spherical 
Surface 

   2/122 2/mactactc CRRH 

 

Overall 
Height of 

Convex Plate 
0.75act cH H inch   

Minimum 
Vertical 

Clearance 

Spherical bearings square in 
plan: 

0.7 0.125cpc L inch   

 
Spherical bearings round in 

plan: 
0.5 0.125mc D inch   
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TABLE 7-1 Summary of Design Requirements (cont’d) 

EUROPEAN STANDARD, EN 1337-7:2004 

Increased 
Movements 

 
Design movements shall be increased by  

a) rotation: +/-0.005rad or +/-10/ R  rad, whichever greater ( R  in 
mm) 

b) translation: +/-20mm in both directions of movement with a 
minimum total movement of +/-50mm in the direction of 

maximum movement and +/-20mm transversely unless the 
bearing is mechanically restrained 

 
Note: The above specified increased rotation serves for verifying 
lack of contact between upper and lower part of the bearing or any 
other metallic component and also for verifying that the metallic 
surfacing mating with the PTFE completely covers the PTFE sheet  
 

Minimum 
Movements 
for Strength 

Analysis  

 
Resultant rotational movement shall be taken at least +/-0.003 rad and 

the resultant translational movement not less than +/-20mm 
If a bearing cannot rotate about one axis, a minimum eccentricity of 10% 
the total length of the bearing perpendicular to that axis shall be assumed 

 

Bearing 
Clearance  

Total clearance between extremes of movement shall not exceed 2mm  

Backing 
Plates with 
Concave 

Surfaces – 
Dimensional 
Limitations 

 
 
 
 
7.4 Lateral Load Resistance 
 
Table 7-1 includes a limitation on horizontal load H that is based on the requirement that 
the average contact stress on the PTFE remains below an acceptable limit PTFE .  This 
limitation is given by equation (7-1) where R is the radius of curvature of the spherical 
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part, PD is the vertical load, angles   and  are defined in Figure 7-4 and  is the bearing 
rotation. 
     2 2sin sinPTFEH R                 (7-1) 

 
Documentation of the derivation of this equation could not be found.  A derivation, based 
on a number of assumptions, is described below.   Consider first that the concave surface 
in Figure 7-4 does not rotate. The resultant force develops at an angle  as shown in 
Figure 7-4.  It is presumed that the resultant load is carried over a circular concave area of 
which the diameter is highlighted in Figure 7-4. The apex and base of this circular 
concave area expends from angle  2 

 
to angle  , that is over angle  2   ; this 

is because each of the equal lengths (radii of contact area) shown in Figure 7-4 
corresponds to an angle    .  The projection of the circular concave area onto a 

plane perpendicular to the direction of the resultant force is a circular area with a radius 
equal to  sinR   .   

Consider next that the concave plate of the bearing undergoes rotation by angle   as 
shown in Figure 7-5.  Note that this figure is basically the same as Figure C14.7.3.3.-1 of 
the 2010 AASHTO LRFD Specifications but the bearing rotation is shown with the 
correct amplitude.   Also consider that the vertical and horizontal forces remain the same 
during this rotation.  The angle corresponding to the contact area is reduced by   so that 
the angle is     

 
instead of    . The projection of the circular concave area 

onto a plane perpendicular to the direction of the resultant force is a circular area with a 
radius equal to  sinR     .  Noting that the resultant force is equal to / sinH  , the 

average contact stress on the PTFE may be expressed as 
 

  2

/ sin

( sin )PTFE

Force H

Area R


   

 
 

    (7-2)  

 
Equation (7-2) leads to equation (7-1) when PTFE  is interpreted as the maximum average 

contact stress limit permitted on the PTFE for the limit state considered.   
 
Note that the requirement of equation (7-1) intends to limit the contact pressure on the 
PTFE-it is not a requirement to prevent dislodgement of the bearing by sliding of the 
concave plate over the convex plate and is not a requirement to prevent uplift.  It may 
also be recognized that equation (7-1) is derived on the basis of conservative assumptions 
on the way the force is resisted by the concave plate.  Also, the stress limit 4.5PTFE ksi   

is low for this check. Herein, we maintain this stress limit although it could be changed in 
the future.  Accordingly, it is recommended that this check is only performed for service 
load conditions and is not performed for seismic load conditions. 
 
We propose that equation (7-1) be used for spherical bearings with a flat sliding surface 
under the following conditions and with a modification to permit use with factored loads: 
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1) Quantity 1.45PTFE ss  , where ss  is the permissible unfactored PTFE stress 

(maximum value for average stress) in Table 14.7.2.4-1 of AASHTO LRFD 
(2007, 2010).  Note that PTFE  is now interpreted as a permissible factored stress 

as discussed in Section 9.2 later in this report.  Quantity 1.45 represents the factor 
to obtain the factored stress as explained in Section 9.2.  Use a factored PTFE 
stress limit 1.45 4.5 6.5PTFE x ksi   , which is valid for woven PTFE fiber but 

presumed to be conservative for this check. 
 

2) Calculate the factored lateral force as 0.06 D DH P  when checking load 

combination Strength I (where the load factor is D =1.5) and as 

0.06( )D D L LH P P    when checking load combination Strength IV (where the 

load factors are D =1.25 and L =1.75). 

 
3) Note the use of a coefficient of friction equal to 0.06 for service load conditions. 

   
4) Angle  is equal to the friction coefficient which is 0.06. 

 
5) Restrict the value of radius R to 40inch to avoid excessively shallow concave 

plates.  Note that the limit of 40inch is arbitrary and may be revised in the future. 
 

6) Restrict angle   to 35 degrees.   
 

These restrictions on R and   are consistent with past practice (but not exactly the same, 
e.g., see European, 2004 where  is restricted to 30 degrees).  It should be noted that 
bearings with such geometrical characteristics have been in service without any 
problems-for example, see Friction Pendulum bearing in Figure 4-24 in Constantinou et 
al, 2007a with R43inch and 340. 
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FIGURE 7-4 Lateral Load Resistance of a Spherical Bearing without Bearing 
Rotation  
 
7.5 Resistance to Rotation 
 
A spherical bearing resists rotation through the development of a moment.  This moment, 
with respect to the pivot point located at distance R to the spherical surface, is easily 
shown to be given by the following equation in which P is the vertical load and µ is the 
coefficient of friction at the spherical surface: 
 
     M PR            (7-3)
 
However, AISI (1996) originally reported and later AASHTO (2007, 2010) incorporated 
in its specifications that this moment is equal to 2 PR  when the bearing has a flat sliding 
surface in addition to the spherical part and is equal to PR  when only the spherical part 
exists.   Herein, we first show by complex analysis that indeed equation (7-3) is valid for 
a spherical sliding surface.  Second we attempt to provide an explanation for the origin of 
the equation that doubles the expression for moment in (7-3) when the bearing has a flat 
sliding surface.   
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FIGURE 7-5 Lateral Load Resistance of a Spherical Bearing with Bearing Rotation  
 
Moment Equation for Spherical Surface 
 
In a spherical bearing, the moment is the resultant moment (about the center of the 
spherical surface or pivot point) of the friction forces that develop between the surfaces 
of spherical sliding that slide against each other during rotation of the bearing.  Consider 
the spherical coordinate system of Figure 7-6 which has as origin the center of the 
spherical surface of the bearing. The spherical surface of the bearing extends over the 
surface for which angle   is in the range of zero to a value equal to   (see Figure 7-4).  
We define an outward normal unit vector at each point P of the spherical surface as  
 
   rkzjyixn /  (7-4) 

 
while the infinitesimal area dA  is given by  
 
  ddrdA  sin2  (7-5) 
 
Note that r,  and  are the spherical coordinates.  The distribution of normal stresses at 
the interface when the bearing is subjected to compression by vertical load P is given by 
(Koppens, 1995) 

    2 3

3 cos

2 1 cos

P

R

 
 





 (7-6) 
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It is noted that the effect of horizontal loads acting on the bearing has been ignored.  
 
Friction tractions (or stresses) on the spherical surface are given by  
 
     (7-7) 
 
where   is the coefficient of friction.  These stresses are tangential to the surface of the 
sphere, i.e. perpendicular to the vector defined in (7-4).    Consider that rotation takes 
place about axis x so that the infinitesimal force due to friction tractions is  
 
 dT dA f    (7-8) 

 
where f  is a unit vector on the y - z  plane such that nf  =0.  

 

x  

y

z

O 

dA  

),,( zyxP

r

  

  

sinr  

FIGURE 7-6 Spherical Coordinate System for Moment Calculation 
 
Therefore,  
 

 
2 2 2 2

1 1
tan sin

1 tan sin 1 tan sin
f j k 

   
   

 
 (7-9) 

 
The vectors j  and k  are unit vectors in directions y and z, respectively.  The 

contribution to the moment Md  by the force Td  about the point O is 
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zy dTdT

rrr

kji

TdrMd

0

cossinsincossin   (7-10) 

 
or 

  

 3 2 2

3
2 23

2

sin sin sin cos
3 1

sin sin cos
1 tan sin2 1 cos

sin cos cos

PR
d M d d

   
     

  
  

 
          

 (7-11) 

 
Integration of (7-11), for   ranging between    and   and for   ranging between 
0  and 2 , gives the total moment as a function of angle .  The integration was carried 
out numerically and results are presented in Figure 7-7.  Clearly, the moment M  is equal 
to PR  for all practical purposes.  

0
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)

FIGURE 7-7 Moment Resistance of Spherical Bearing for Varying Bearing 
Subtended Semi-angle  
 
 
 
Moment Equations for Spherical Bearings with Flat Sliding Surface 
 
Consider Figure 7-8 showing a bridge girder supported by a spherical bearing with and 
without a flat sliding surface.  The axis of rotation of the spherical bearing lies under the 
neutral axis of the bridge girder.   Let SS be the centroid of the cross-sectional area of the 
girder and let SB be the pivot point of the bearing.  The moment M  is the difference 
between the bending moments of the girder on either side of the support. The horizontal 

 
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force P  is the difference between the axial forces of the girder on either side of the 
support.  
 
Assume that the bearing rotates by an angle , and consider that the girder cross-section 
rotates about point SS when a flat sliding surface is present and about SB when such a 
surface is not present.   Also assume that a spherical bearing undergoes a horizontal 
displacement s  (applicable only when there is a flat sliding surface). When a flat sliding 
surface is present, application of the principle of virtual work results in  
 

 
    M P s P l l d P R P s                 (7-12) 

 
When there is no flat sliding surface, application of the principle of virtual work results in 
 
  M P d P R         (7-13) 

 
In both cases the resulting moment is  
 
  M P R d   (7-14) 

 
Note that equation (7-14) could also be derived from consideration of equilibrium (Figure 
7-8).  
   
Equation (7-14) is the correct equation, in principle identical to equation (7-3) but for a 
different arm (equivalently location of the moment). 
 
Analysis reported by Wazowski (1991) for the case of a spherical bearing with a flat 
sliding surface that undergoes a horizontal displacement s  and a rotation   derives the 
bending moment as equal to the sum of  the bending moments due to displacement s  and 
a rotation  , each separately calculated using the principle of virtual work.  The result is   
 
  M P R d l    (7-15) 

 
Equation (7-15) is incorrect as the two moments cannot be added.   We believe that 
equation (7-15) is the basis for the equation 2M PR since 2R d l R   . As stated by 
Wazowski (1991), equation (7-15) corresponds to “extremely disadvantageous influence 
of friction on the superstructure”.   
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FIGURE 7-8  Moment Resistance of Spherical Bearings with or without a Flat  
Sliding Surface  
 
 
7.6 Eccentricity due to Rotation at the Spherical Surface 
 
Consider a multidirectional spherical sliding bearing as shown in Figure 7-9(a).  The 
axial load P develops at the center of the flat sliding surface.  Consider now rotation of 
the spherical part.  The moment M PR , given by equation (7-3), will develop.  
Figures 7-9(b) and 7-9(c) present, respectively, free body diagrams of the concave and 
convex plates of the bearing.  Equilibrium of moments requires that a moment equal to 

minM PT  develops at the flat sliding surface, where Tmin is the minimum thickness of 
the concave plate.  This is equivalent to the equilibrium condition shown in Figure 7-10 
where the point of application of load P shifted by an amount e, which equals to: 
 
 mine T   (7-16) 

 
Since Tmin is small and typically of the order of one inch and the friction coefficient is 
much smaller than unity, the eccentricity e is very small and negligible.  
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This is also true for Friction Pendulum bearings which may be regarded as spherical 
bearings with a spherical rather than flat sliding surface (see Fenz and Constantinou, 
2008c, Figure 2-8).  

                                    

                                         

                                              

FIGURE 7-9 Free Body Diagram of Spherical Bearing under Vertical Load and 
Rotation 

 

FIGURE 7-10 Free Body Diagram of Concave Plate Showing Eccentricity
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SECTION 8 
PROCEDURE FOR DESIGN OF END PLATES OF SLIDING BEARINGS 

 
8.1 Transfer of Force in Sliding Bearings 
 
The end plates of PTFE spherical and Friction Pendulum sliding bearings appear as 
column base plates and can be designed as such (e.g., see DeWolf and Ricker, 2000). 
This is best illustrated in the Friction Pendulum bearing as, for example, in the double 
(similarly for the triple) Friction Pendulum bearing shown in Figure 8-1, which will be 
used in this section for calculations of capacity. The same procedure also applies in the 
design of end plates of the spherical flat sliding bearings described in Section 7.  
Fundamental in this procedure is the consideration of the axial load acting on the bearing 
in the deformed configuration.  To illustrate this concept, consider Figures 8-2 to 8-4 
which show free body diagrams of sliding bearings in a laterally displaced structure.   
 
Figure 8-2 illustrates the transfer of force in flat spherical sliding bearings with the 
stainless steel surface facing down (typical installation procedure). Figure 8-3 shows the 
same but for the stainless steel surface facing up, whereas Figure 8-4 shows double 
(similarly triple) Friction Pendulum bearings for which two major sliding surfaces 
undergo sliding by different amounts.  The figures demonstrate that lateral displacements 
alter the axial force on each bearing but the change is insignificant to warrant 
consideration in design.  Note that these changes are only due to lateral displacements 
and they do not include the effects of inertia loads.  The figures demonstrate that each 
sliding bearing is subjected at the sliding interface or at a pivot point (for the Friction 
Pendulum bearings) to an axial load P and a lateral load F at the displaced position of the 
slider.  (Note that P· moment only appears when the axial force is relocated to the center 
of each end plate).  The axial force P is shown in these figures to act at the center of the 
slider.  Actually, the force acts slightly off the center as a result of rotation of the 
spherical part of the bearing.  This issue was discussed in Section 7 where it was shown 
that relocation of the location of action of the force is insignificant.   
 
The lateral force F is neglected in the adequacy assessment of the end plates (shear force 
is transferred by shear lugs and bolts) but the effect of the moment F·h or F·(h1+h2) needs 
to be considered.  For a flat sliding bearing, the lateral force F is generally less than 0.1P, 
where 0.1 is the coefficient of friction under dynamic conditions-otherwise is much less 
than 0.1 (see Constantinou et al, 2007a; Konstantinidis et al, 2008).  The height h or 
(h1+h2) is generally about 1/5th of the plan dimension (e.g., diameter D) of the contact 
area.  Accordingly, the eccentricity or the ratio of moment M to load P is 
M/P=0.1Px0.2D/P=0.02D or less than 2% of the diameter of the contact area.  This is too 
small to have any important effect.  However, in the case of Friction Pendulum bearings 
(Figure 8-4) the lateral force F may be as large as 0.2P (friction force plus restoring 
force) and heights h1 and h2 may be as large as 10inch for large displacement capacity 
bearings.  For example, the bearing of Figure 8-1 has h1=h27inch (175mm) and F0.2P 
at the location of maximum displacement. Still, as it will be shown in an example later in 
this section, the resulting moment does not have any significant effect on the assessment 
of adequacy of the end plates. 
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FIGURE 8-1  Friction Pendulum Bearing and the Procedure for End Plate Design 
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FIGURE 8-2 Transfer of Force in Flat Spherical Bearing with Stainless Steel 
Surface Facing Down 
 

 
FIGURE 8-3 Transfer of Force in Flat Spherical Bearing with Stainless Steel 
Surface Facing Up 
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FIGURE 8-4 Transfer of Force in Double or Triple Friction Pendulum Bearing 
 
8.2   Procedure for Design of End Plates of Sliding Bearings 
 
The procedure followed herein for the capacity check of the end plates of sliding bearings 
follows principles similar to those used in the safety check of end plates of elastomeric 
bearings presented in Section 5. The overturning moment at the location of the displaced 
slider (moment due to lateral force only) is neglected and instead the vertical load is 
considered concentrically transferred at the location of the articulated slider. That is, the 
P- moment is not considered when the bearing is analyzed in the deformed position. 
This is equivalent to the treatment of elastomeric bearings by use of the reduced area as 
described in Section 5. 
 
Analysis and safety checks of the end plates need to be performed for service loads and 
for the DE and the MCE level earthquakes. Herein and for earthquake conditions, we 
require that in both checks the end plates are “essentially elastic”. This is defined as 
follows: 
 

a) In the DE, “essentially elastic” is defined as meeting the criteria of the AISC for 
LRFD (American Institute of Steel Construction, 2005a) using the minimum 
material strengths and appropriate   factors.  

b) In the MCE, “essentially elastic” is defined as meeting the criteria of the AISC for 
LRFD using the expected material strengths and unit   factors. The expected 
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material strengths should be determined using the procedures of the American 
Institute of Steel Construction (2005b). In case the expected material strength 
cannot be determined, the minimum strength should be used. 

 

The axial load P is the factored load equal to either u D D L LP P P    (per Section 5.6 

for elastomeric bearings but the live load is the sum of the cyclic and the static 

components) for service loading conditions or 
DE DEu D D SL EP P P P    load (per 

Section 5.6) for DE conditions or 
MCE MCEu D D SL EP P P P   (per Section 5.6) for the 

MCE conditions at displacement   under earthquake loading conditions. Figure 8-1 
illustrates the procedure for checking the end plate thickness. The following steps should 
be followed given the factored load P, the displacement   and the bearing geometry per 
Figure 8-1: 
 

o Calculate the concrete design bearing strength: 
 
 '1.7b c cf f   (8-1) 

 
In equation (8-1), the factor 1.7 implies that the assumption of confined concrete 
was made. It is achieved either by having a concrete area at least equal to twice 
the area over which stress bf  develops or by proper reinforcement of the concrete 

pedestal.  
 

o Calculate the diameter 1b
 of the area of concrete carrying load: 

 

 1

4

b

P
b

f
  (8-2) 

Note that equation (8-2) is based on the assumption of a circular contact area 
between the bearing plate and concrete.   This assumption needs modification 
when the bearing is deformed and the slider is at a location close to the edge of 
the bearing.  An example later in this section will illustrate the procedure. 
  

o Calculate the loading arm: 
 

 1

2

b b
r


  (8-3) 

 
o Calculate the required plate bending strength for unit plate length 1l  : 

 

 
2 2

1 1
2 3SIMPLIFIEDu b b

br r
M f f

b
    
 

 (8-4) 

Note that equation (8-4) accounts for the circular shape of the loaded area, as 
illustrated in Figure 8-1. However, equation (8-4) is based on a simplified 
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representation of plate bending that is valid for small values of the ratio of the arm 
r  to slider diameter b . To investigate the error introduced an exact solution was 
obtained for the bending moment under elastic conditions (Roark, 1954). The 
solution is based on the representation shown in Figure 8-5 of a circular plate 
built-in along the inner edge and uniformly loaded. The moment per unit length at 
the built end is  
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 (8-5) 

 
where is the Poisson’s ratio. Figure 8-5 presents values of the moment 
normalized by the product 2

1bf b  as calculated by the simplified and the exact 
theory for 0.3  . The results of the two theories agree well for values of ratio 

1/b b  that approach unity. The correction factor shown in Figure 8-5 is the ratio of 
the moment calculated by the exact and the simplified theories. The factor may be 
used in calculating the exact moment by multiplying the factor by the result of 
equation (8-4).  It is proposed that equation (8-4) be used after multiplication of 
the right hand side by factor CF (correction factor) read out of Figure 8-5. 

 
o Calculate the required plate thickness: 

 

 
4 u

b y

M
t

F
  (8-6) 

 
where yF

 
is the yield stress of the plate material. 

The parameters c  and b  are respectively equal to 0.65 and 0.9 for service load and DE 

conditions and are equal to unity for MCE conditions. Also, the thickness calculated by 
equation (8-6) is compared with the available thickness which for concave plates is 
dependent on the position of the slider. For service loading conditions and for building 
applications, the slider is assumed centered. For service loading conditions and for bridge 
applications in which the bearing undergoes a displacement , it is appropriate to 
consider that the slider is off-center and the available thickness is calculated from the 
bearing geometry. If the service displacement   is larger than one half the diameter of 
the slider then it is conservative to assume that the slider is at a location such that the 
available thickness is the minimum. For seismic loading conditions it is typically 
assumed that the slider is at the position corresponding to the seismic displacement for 
either DE or MCE, depending on the condition checked. 
 
The procedure outlined above may be modified as follows: 

a) For cases with additional plates backing the bearing plate, the required bending 
strength must be partitioned to the plates in proportion to their plastic strength, 
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that is, in proportion to 2
yF t

 
for each plate. Then equation (8-6) is used with the 

portion of moment corresponding to the plate checked. 
 

b) The effect of the lateral force acting at the slider to concave plate interface may be 
incorporated by the procedures for elastomeric bearings outlined in Section 5.7.3, 
Load-Moment Procedure for the case of combined axial force and moment 
without bolt tension.  The examples that follow assess the adequacy of end plates 
of bearings without and with due consideration for this moment. 
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FIGURE 8-5  Comparison of Moment in End Plate Calculated by the Exact Solution 
and by the Simplified Theory and Correction Factor for =0.3 
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8.3 Example of Assessment of Adequacy of End Plate under Service Load 
Conditions 
 
As an application example consider the double Friction Pendulum bearing of Figure 8-1. 
The concrete strength is assumed to be ' 4ksi=27MPacf  and the factored load for 

service load conditions ( c and b are respectively equal to 0.65 and 0.9) is P=1560kip 

(6942kN). The plate material is cast ductile iron ASTM A536, grade 65-45-12 with 
minimum 45ksi=311MPayF  . Application is in a bridge with 6in=150mm   . We 

conservatively assume that the edge of the slider is at the location of the minimum plate 
thickness, which is 2.5in. Considering only the axial load, equation (8-1) 
gives 4.42ksi=30.50MPabf  , equations (8-2) and (8-3) give 1 21.2inb  and 4.6inr  . 

The correction factor is obtained for 1/ 12 / 21.2 0.57b b   from Figure 8-2 as 0.87. The 

required strength is calculated from equation (8-4) after multiplication by the factor 0.87 
as 70.66 0.87 61.39kip-in/inuM    (273.2kN-mm/mm) and the required thickness from 

(8-6) is 2.46in=62.5mmt  . Since the available thickness is 2.5in (63.5mm), the plate is 
adequate. 
 
8.4 Example of Assessment of Adequacy of End Plate under Seismic Conditions 
 
Consider again the double Friction Pendulum bearing of Figure 8-1 under seismic 
conditions where the factored load is P=1650kip (7343kN) and the lateral bearing 
displacement is 22inch, so that 1=2=11inch.  The radius of curvature of each sliding 
surface is 88inch (2235mm).   Figure 8-6 illustrates the bottom plate of the bearing with 
the slider at the deformed position.  Assuming adequate concrete confinement,  

4.42ksi=30.50MPabf   (also assume DE conditions so that c and b are respectively 

equal to 0.65 and 0.9).  If we assume that the contact area is circular, as in the case of 
service load, the diameter is given by equation (8-2) so 
that 1 4 / 4 1650 /( 4.42) 21.80bb P f x x inch    . However, a circular contact area 

below the deformed slider can only have a maximum diameter of 20inch as the edge of 
the bearing is at 10inch distance from the center of the slider (see Figure 8-6).  Therefore, 
a reasonable assumption for distribution of the concrete pressure is to be over a parabolic 
area with length of the minor axis a1 (along the direction of slider motion) and length of 
the major axis b1.  Now a1=20inch.  Distance b1 is given by   
 

 1
1

4

b

P
b

a f
    (8-7) 

 
Equation (8-7) results in b1=23.77inch.  The critical section is as shown in Figure 8-6 
with arm given by equation (8-3), r = (23.77-12)/2=5.89inch.  Conservatively, the 
bending moment may be calculated by equation (8-4) with b=12inch (note that the 
second term in equation 8-4 applies for circular area and the term should diminish as b1 
becomes larger than a1).  The result is 126.8kip-in/in, which after correction per Figure 8-
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5 is 126.8 0.82 104.0 /uM x kip in in   .  Use of equation (8-6) results in t=3.20inch.  

The available thickness at the critical section is 3.38inch, therefore acceptable.  Note that 
the critical section is at distance of 12.53inch from the bearing center, where the available 
thickness was calculated as 3.38inch. 

 
 

FIGURE 8-6 End Plate Adequacy Assessment in Deformed Position Using Centrally 
Loaded Area Procedure 
 
8.5 Example of Assessment of Adequacy of End Plate Using Load-Moment 
Procedure 
 
Consider again the double Friction Pendulum bearing of Figure 8-1 under seismic 
conditions where the factored load is P=1700kip (7565kN), lateral force F=0.2P=340kip 
(1513kN) and the bearing has deformed to its displacement capacity.  The radius of 
curvature of each sliding surface is 88inch (2235mm). 
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We follow the procedure for the design of column base plates with moments (DeWolf 
and Ricker, 1990), which is equivalent to the Load-Moment procedure for elastomeric 
bearings (see Section 5.7.3).  Eventually we conclude that application of this procedure 
will not result in additional requirements for plate thickness beyond those established 
using the procedure of the centrally loaded area without moment. 
 
Figure 8-7 illustrates the bearing in the deformed configuration including the forces 
acting on the slider and end plate and the corresponding distribution of pressure at the 
concrete to plate interface.  The lateral force F acts at the pivot point of the slider 
(assumed to be at half height of the slider for either double or triple Friction Pendulum 
bearings).  The lateral displacement capacity of the bearing is 2=13.5inch (343mm) on 
each sliding interface for a total of 27inch (686mm).  The axial load P=1700kip 
(7565kN) and moment M=F·h+P·2=25,330kip-in (2863kN-m) are shown acting at the 
center of the plate.  The assessment procedure follows Section 5.7.3 (illustrated in Figure 
5-10) for elastomeric bearings on the basis of the Load-Moment Procedure.  The concrete 
design bearing strength is again considered to be 4.42ksi(30.5MPa)bf    (subject to 

confinement considerations given the location of the load). Note that we utilize a value of 
the concrete bearing strength that corresponds to 0.65c   .  Since the bearing is at its 

displacement limit, the conditions should be those of the MCE for which a value 
1c  could be used.  That is, the calculations are conservative. 

 
 Equation (5-52) provides distance A=18.3inch (465mm) after using B=42inch 
(1067mm)-the plan dimension of the square end plate.  Equation (5-53) results in 
pressure f1=4.42ksi (30.5MPa), which equals the strength fb. (Note that if the pressure f1 
exceeded the strength fb, f1 should be limited to fb and the distribution of pressure should 
be re-calculated).  The plate adequacy assessment is based on the calculation of the 
bending moment in the end plate at the section directly below the edge of the slider and 
subjected from below to concrete pressure (shown shaded in Fig. 8-7) over the distance 
r=4.8inch (122mm).  Clearly there is no need to check the plate for MCE conditions as 
already the check for service load conditions using the centrally loaded area without 
moment found the plate acceptable for more onerous conditions (for service conditions, 
r=4.6inch, pressure equaled to 4.42ksi and available plate thickness was 2.5in; whereas 
for MCE conditions, r=4.8in but pressure is less than 1.16ksi and available plate 
thickness is 2.8inch.  Also, the expected material strength and  factors are larger).  In 
general, the bearing end plate adequacy assessment of sliding bearing is controlled by the 
service load conditions.   
 
Consider now the case in which the factored load is P=1900kip (8455kN), lateral force 
F=0.2P=380kip (1691kN) and again the bearing has deformed to its displacement 
capacity. The concrete design bearing strength is again considered to 
be 4.42ksi(4.5MPa)bf  .  Also, B=42in.  For this case, the moment 

M=F·h+P·2=28310kip-in (3200kN-m).  Application of equations (5-52) and (5-53) 
results in A=18.3in and f1=4.94ksi, which exceeds fb.  Therefore, the distribution of 
pressure cannot be triangular as shown in Figure 8-7 but is trapezoidal as shown in Figure 
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8-8.  To determine the dimensions A and A1, equilibrium of forces in the vertical direction 
and of moments about the tip of the bearing (see also Section 5.7.3) is used to obtain: 
 

1

2

b
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A A

f B
       (8-8) 
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1 1
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b
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Solution of these equations results in A=18.0in and A1=2.47in.  This is illustrated in 
Figure 8-8 where it is easily understood that the situation is not as onerous as in the case 
of the service load conditions discussed earlier. 
 

 
 

FIGURE 8-7 End Plate Adequacy Assessment Using Load-Moment Procedure  
 
 
      

F 
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FIGURE 8-8 End Plate Adequacy Assessment Using Load-Moment Procedure for 
Higher Load 
 
8.6 Plastic Analysis of End Plates 
 
The procedure for the design of end plates of sliding bearings described in Section 8.2 is 
based on the calculation of the plate bending moment under elastic plate conditions.  
LRFD formulations should more appropriately consider ultimate plate conditions when 
loaded by the factored loads.  Consider the end plate of a sliding bearing loaded with a 
factored axial load P and subjected to a pressure below equal to the concrete bearing 
strength as shown in Figure 8-9.  The calculations of the concrete bearing strength, 
diameter b1 and arm r are based on equations (8-1) to (8-3).  The problem then is to 
determine the value of the load P at which collapse of the plate occurs.  Collapse is 
defined herein as the plate reaching its plastic limit state (Save and Massonnet, 1972). 
 
Save and Massonnet (1972) presented an exact solution for this problem.  However, the 
solution is in graphical form.  Herein a simple solution is derived on the basis of yield 

F 
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line theory and shown to be essentially identical to the exact solution of Save and 
Massonnet (1972).  The reader is also referred to Sputo (1993) for a treatment of a similar 
problem in pipe column base plates. 
 

 
FIGURE 8-9 Loaded End Plate 

Consider first the case of a polygon-shaped plate with n  sides under uniform load with a 
yield line pattern as shown in Figure 8-10 and with its center undergoing a unit 
displacement. The work done along the radial lines yielding for one of the n  segments of 
the plate as shown in Figure 8-10 is given by the product of the plastic moment pM

 
(defined as the moment per unit length when the section is fully plastic), the rotation and 
the projection of the yielding radial lines onto the axis of rotation.   
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The total work for all segments is  
 

 
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The limit of equation (8-11) for infinite number of sides is  
 
 pcircularradial MW 2,   (8-12) 

 
The work of the perimeter yielding (circle of diameter b1) is  
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Based on the above information, we implement yield line analysis for the plate of Figure 
8-9. We assume a unit displacement for the perimeter of the plate as shown in Figure 8-
10.   The internal work is the sum of the work of the radial lines yielding and the work of 
the perimeter yielding: 
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FIGURE 8-10 Polygon-Shaped Plate Yielding   
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FIGURE 8-11 Yield Line Analysis of Hollow Circular Plate  
 
The external work is the product of the uniform pressure and the volume under the 
deflected area outside the column perimeter as shown in Figure 8-11: 
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By equating the internal work to the external work we obtain 
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Equation (8-17) provides the limit on the ratio of factored load P to area of diameter b1 at 
plastic collapse.   A comparison between the predictions of equation (8-17) and the exact 
solution of Save and Massonnet (1972) is provided in Figure 8-12.  The agreement is 
excellent. 
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FIGURE 8-12 Comparison of Yield Line Solution and Exact Solution for Plate 
Plastic Collapse 
 
Defining the ultimate moment as the plastic moment, equation (8-6) is used to calculate 
the required thickness of the end plate: 
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In the above equation, b  and yF

 
were previously defined.   Equation (8-18) (plastic 

solution) always predicts a thickness less than what equations (8-5) and (8-6) (elastic 
solution) will predict.  This is due to the fact that the moment Mu as predicted by equation 
(8-5) or by equation (8-4) with the correction is larger than the moment Mp predicted by 
equation (8-17).  This is shown in Figure 8-13 where the predictions of the two theories 
are compared.  
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FIGURE 8-13 Prediction of Ultimate Moment by Elastic and Plastic Solutions 
 
As an example of application of the plastic solution to assess the adequacy of an end 
plate, consider again the bearing of Figure 8-1 (also see Section 8.3 for assessment of 
adequacy based on the linear solution).  The concrete strength is assumed to be 

' 4ksi=27MPacf   and the factored load for service load conditions ( c  and b  are 

respectively equal to 0.65 and 0.9) is P=1560kip (6942kN). The plate material is cast 
ductile iron ASTM A536, grade 65-45-12 with minimum 45ksi=311MPayF  . 

Application is in a bridge with 6in=150mm   so that we assume that the available 
plate thickness is the minimum thickness or 2.5in (63.5mm). Considering only the axial 
load, equation (8-1) gives 4.42ksi=30.50MPabf  , equation (8-2) gives 

1 21.2in=538.5mmb   whereas 12inb  . Use of equation (8-18) gives 

40.0kip-in/inpM 
 
and 1.99in=50.5mmt  .  Note that the elastic solution (see Section 

8.3) resulted in 2.46in=62.5mmt  . 
 
While the use of the plastic solution is consistent with LRFD formulations, the resulting 
reduced requirements for plate thickness may result in undesirable plate flexibility.  
Accordingly, it is recommended that the plastic solution (equation 8-18) not be used for 
design of end plates until experience with plate stiffness requirements develops. 
 
8.7 Stiffness Considerations in the Design of End Plates of Sliding Bearings 
 
The procedure for design of sliding bearing end plates is based on strength and does not 
consider any additional requirements for stiffness. The Engineer may want to impose 
additional stiffness related criteria for the design of sliding bearings. Stiffness may be 
required to prevent distortion of the bearing that will impair its proper functioning. For 
example, the European Standard for Structural Bearings EN1337 (European, 2004) has 
specific requirements that intend to prevent distortion of the sliding surface (a) as a result 
of short-term and long-term deformation in the concrete and (b) during transport and 
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installation. Permanent deformations of the end plates are associated with comparable 
deformations of the sliding surface that will result in increased wear.    
 
Experience with sliding bearings has shown that end plates designed by the elastic 
method described in this section generally do not experience any problems related to 
distortion of the sliding surface.  Accordingly, we recommend that no particular stiffness 
requirements are imposed on end plates of sliding bearings but also recommend the use 
of the more conservative elastic method for the adequacy assessment of end plates 
instead of the plastic method. 
 
8.8 Summary and Recommendations 
 
The centrally loaded area procedure and the load-moment procedure are methods for 
adequacy assessment of column steel base plates.  The two methods are also appropriate 
for use in the adequacy assessment of the end plates of elastomeric bearings.  In the case 
of elastomeric bearings, the bearing is thought to be the equivalent of a column, although 
of much lesser stiffness and undergoing large deformations.  Both methods are typically 
used for the assessment of adequacy of the end plates of elastomeric bearings. 
 
For sliding bearings, the centrally loaded area procedure represents a physically 
meaningful procedure for the assessment of adequacy of bearing plates.  It is 
recommended that only this procedure is used in the case of sliding bearings.  Use of the 
load-moment procedure as demonstrated in the examples in this section does not lead to 
additional requirements beyond those required by the centrally loaded area method. 
 
The plastic method of plate analysis, although consistent with the LRFD formulation, 
leads to smaller end plate thickness of sliding plates by comparison to the elastic solution.  
We recommend that the elastic method be used in the design of bearing end plates.  This 
will ensure thicker plates than needed for strength but stiffer plates in order to prevent 
distortion of the sliding surface. 
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SECTION 9 
PROCEDURE FOR DESIGN OF PTFE SPHERICAL BEARINGS 

 
9.1  Introduction 
 
An example of multidirectional PTFE sliding spherical bearing design is presented in this 
section.  It is presumed that PTFE spherical bearings are fabricated products that are 
designed and detailed by the bridge engineer and then fabricated by a qualified fabricator.  
Accordingly, the procedures presented in this section include more details than a 
presentation of procedures for assessment of adequacy. The design procedure is based on 
Section 14 of AASHTO LRFD (2007, 2010), design procedures established by Caltrans 
(described in Section 7 of this report) and additional developments presented in Sections 
7 and 8 of this report.   These procedures consist of several dimensional constraints and 
simple rules that limit the apparent pressure on the sliding interfaces.  The design of the 
sole and masonry plates (see Figure 7-2) is based on the LRFD procedures described in 
Section 8 of this report.  
 
9.2  Materials Used in PTFE Spherical Bearings and Limits of Pressure on PTFE 
 
Typical materials used in the construction of multidirectional PTFE spherical bearings for 
use in California are as follows.   
 
Sliding Interface 
 
The sliding interfaces consist of austenitic stainless steel AISI type 304 in contact with 
woven PTFE fiber (note that this material is identified in Table 14.7.2.4-1 of AASHTO 
LRFD Specifications-2007, 2010).  This interface is the one of choice for applications of 
PTFE spherical bearings in California.  In highly corrosive environments, AISI type 316 
stainless steel should be considered (Constantinou et al, 2007a).   Materials other than 
woven PTFE fabric have been used in sliding bearings and may eventually be used in 
applications in California.  Examples are the materials used in the sliding interface of 
Friction Pendulum bearings (see Section 4 herein and Constantinou et al, 2007a) and 
material MSM (see Konstantinidis et al, 2008). 
 
For woven PTFE fabric in applications other than seismic isolation, the average bearing 
pressure or contact stress (load divided by apparent contact area) and edge stress limits in 
Table 9-1 are used. 
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TABLE 9-1 Limits of Average and Edge Unfactored Stress on Woven PTFE 
(1ksi=6.9MPa) 
 

 Average Stress (ksi) Edge Stress (ksi) 
Permanent 

Loads 
All Loads Permanent 

Loads 
All Loads 

Minimum Value 1.5 - - - 
Maximum Value 3.0 4.5 3.5 5.5 

Permanent Load is the dead load.  All Loads are combined dead and live loads.  The limits are for 

unfactored loads. 

 
Note that the maximum pressure limits in Table 9-1 are based on Table 14.7.2.4-1 of 
AASHTO LRFD (2007, 2010).  They intend to prevent excessive creep and plastic flow 
of the PTFE, and reduce wear.  The minimum pressure limit is suggested in this report in 
order to minimize the potential for uplift and to maintain the friction coefficient within 
predictable limits.  
  
It should be noted that the pressure limits in Table 9-1 apply for service limit state 
combinations for which the loads are unfactored (Service I).  In LRFD formulation, it is 
desirable to modify the stress limits of Table 9-1 for use with combinations of factored 
extreme loads as specified in the strength limit states of AASHTO LRFD (2007, 2010).  
The load combinations that control the calculation of factored stress in PTFE spherical 
bearings are Strength I and Strength IV of the AASHTO LRFD (2007, 2010).  For these 
combinations, the ratio of the sum of factored loads to the sum of unfactored loads 

D D L L

D L

P P

P P

 


is, for most bridges, in the range of 1.4 to 1.5.  Accordingly, it is proposed 

that the factored maximum stress value used in Strength I and Strength IV combination 
LRFD checks is 1.45ss, where ss is the value for maximum average stress in Table 9-1. 
 
The contact area of the flat PTFE-stainless steel interface is either circular (diameter B) or 
square (plan dimension B).  Expressions for the edge stress are given below.  The average 
stress ave  is the ratio of load P to the area of the PTFE.  Note that the moment for the 
calculation of the edge stress is given by µPTmin, where P is the vertical load,   is the 
coefficient of friction at the spherical sliding surface and Tmin is the distance of the 
spherical sliding surface to the flat sliding surface (see Figure 7-3). 
 
 Square PTFE Area (dimension B) 
 

 min6
(1 )edge ave

T

B

     (9-1) 

 
Circular PTFE Area (diameter B) 
 

 min8
(1 )edge ave

T

B

    (9-2) 
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Given that the dimension Tmin is small and about one inch or less, the edge stress is 
marginally larger than the average stress.  For example, consider 0.03   (appropriate 
for service load conditions for which equations 9-1 and 9-2 apply), Tmin=1inch and 
B=10inch (circular area).  The edge stress will be 1.024edge ave   .  This implies that the 

limits on edge stress in Table 9-1 will not control.  Accordingly, only checks for the 
average factored stress are proposed in this document. 
 
Sole Plate 
 
The sole plate (see Figure 7-2) transfers the superstructure loads to the bearing and 
provides a stainless steel sliding surface for superstructure translation. The stainless steel 
plate could have square, rectangular or circular shape.  The sole plate is typically 
fabricated from A36/A36M steel and has a welded stainless steel surface. 
 
Concave Plate  
 
The concave plate (see Figure 7-2) is faced on both sides (the top flat and the bottom 
spherical surfaces) with PTFE.  The preferred Caltrans design is to use woven PTFE fiber 
for both surfaces.  Although designs with dimpled lubricated recessed unfilled PTFE 
have been used for the flat sliding surface, these designs are not preferred in California 
due to requirements for maintenance for the lubricated surface.  The concave plate is 
typically fabricated from A36A/36M steel. An acceptable procedure for bonding woven 
PTFE fiber to steel is through the use of epoxies with mechanical fastening into grooves 
machined in the steel substrate of the flat and concave surfaces (see Konstantinidis et al, 
2008 for importance of bonding method in sustaining high velocity seismic motion 
without de-bonding). 
 
Convex Plate  
 
The convex plate (see Figure 7-2) is faced with a spherical sheet of stainless steel to mate 
against the PTFE and to provide for rotational capability. The convex plate is either made 
of solid stainless steel or A36/A36M with a stainless steel welded overlay. 
 
Masonry Plate 
 
The masonry plate (see Figure 7-2) transfers load from the convex plate to the bearing 
seat. The masonry plate is typically fabricated from A36/A36M steel.   
 
9.3 Coefficient of Friction 
 
The coefficient of friction in interfaces used in sliding bearings depends on several 
factors of which the composition of the interface, lubrication, the velocity of sliding, the 
bearing pressure and temperature (ambient and due to frictional heating) are the most 
important.  Constantinou et al (2007a) present a general description of these effects and 
data that cover the spectrum of applications in bridge bearings and seismic isolators.  
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When sliding interfaces are used in seismic isolators, great care should be exercised in 
selecting the materials of the sliding interface (typically the responsibility of the bearing 
manufacturer), in predicting the frictional properties of the bearings over the lifetime of 
the structure and in conducting high speed prototype and production testing of the 
bearings. 
 
Data on the frictional properties of woven PTFE-stainless steel interfaces (the interface of 
choice in spherical bearings) may be found in Mokha et al (1991) and Konstantinidis et al 
(2008).   Recommended values of friction coefficient for use in the analysis and design of 
spherical sliding bearings in conventional applications (not seismic isolation applications) 
subject to the limits of pressure in Section 9.2 above are given in Table 9-2. 
 
TABLE 9-2 Recommended Values of Friction Coefficient for PTFE Spherical 
Bearings Used in Conventional Applications (not seismic isolation) 
 

Use Value 
Analysis under seismic load conditions (high speed) 0.06 
Analysis under service load conditions (low speed) 0.03 

Design of bearings, substructure and superstructure under service load 
conditions* 

0.10 

Design of bearings, substructure and superstructure under seismic load 
conditions 

0.15 

* Use value of 0.06 only when checking equation (7-1) 
 
These limits are primarily based on the test results of Kostantinidis et al (2008).  The 
values of friction coefficient recommended above are conservative for each intended use 
and presume that, unlike seismic isolators, the bearings will not be subjected to high 
speed prototype and production testing other than the minimum required for quality 
control. 
 
9.4   PTFE Spherical Bearing Design Procedure 

The design of the bearing requires the following information that results from analysis of 
the bridge under service conditions and under earthquake Design Earthquake (DE) 
conditions: 

 Dead or permanent load: DP  

 Live load: LP  

 Non-seismic bearing rotation: 
LS (longitudinal axis), 

TS (transverse axis)  

 Non-seismic lateral displacement: 
LS (longitudinal),  

TS (transverse)  

 Seismic displacement in the DE:  
DE LE (longitudinal),  

DETE (transverse) 
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 Seismic bearing rotation in the DE: 
DELE (longitudinal axis), 

DETE (transverse 

axis)   

 Seismic axial load in the DE: 
DEEP  

 
Note that the live load is the direct sum of the static and cyclic components so there is no 
reason to separately calculate the two components as in the case of elastomeric bearings 
(that is, L Lst LcyP P P  ; LstP is the static component; LcyP  is the cyclic component).  This 

is due to the presumption that, unlike elastomeric bearings (see Sections 5 and 6), the 
cyclic component does not have any adverse effects.  Similarly, the non-seismic bearing 
rotation is the direct sum of the static, cyclic and construction-related rotations 
(construction tolerances typically range between 0.01 and 0.02rad-a total bearing rotation 
capacity of 0.035rad or greater is recommended).  Also, the non-seismic lateral 
displacement is the direct sum of the static and cyclic components.  The seismic lateral 
displacement is calculated for the DE.  The seismic displacement in the Maximum 
Considered Earthquake (MCE) is considered to be equal to1.5

DEE .  The total 

displacement considered for design is the MCE displacement plus the non-seismic 
displacement: 
 

 
1.5

I I DEIE S E    
 
  , I=L or T      (9-3) 

 
Subscripts L and T denote the longitudinal and transverse directions, respectively. 
Also, the rotation considered for seismic conditions is  
 

 1.5
I I DEIE S E   

  
      , I=L or T       (9-4) 

  
Step 1: Concave Plate 
 
The lateral load acting on the bearing under service load conditions and used for the 
design of the bearing, the substructure and the superstructure is equal to 0.1 times the 
vertical load (coefficient of friction conservatively assumed to be equal to 0.1).  The 
lateral capacity of the bearing is dependent on the vertical load. If the vertical load is 
removed, the concave plate will slide up and off the convex plate. Therefore, the vertical 
load must be reduced to account for uplift when determining the angle between the 
vertical and applied loads.   The radius R should not exceed 40inch (typically selected in 
increments of 1inch)-a limit based on current experience that provides sufficient lateral 
load resistance. 
 

1) Diameter mD  of minimum allowable projected bearing area (see Figure 9-1). 

The minimum diameter mD  of the concave spherical plate must be large enough 

to ensure that the maximum bearing stress on the horizontal projected area of the 
plate does not exceed the maximum allowable stress on the PTFE fiber. Specify 
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the value of mD  in 0.25inch increments.  Utilize the stress limits in Table 9-1, 

ss 3.0ksi average pressure for dead load and ss 4.5ksi for combined dead 

and live load (un-factored) for selecting the diameter mD . In LRFD formulation 

the factored stress limit is set at 1.45ss as explained in Section 9.2 of this report. 
The controlling load combination cases are Strength I and Strength IV of the 
AASHTO LRFD (2007, 2010), for which the following equations apply: 
 

 
4 4

(1.45 ) (4.3 )
D D D D

m
ss

P P
D

ksi

 
  

 


                                   (9-5) 

 
 

  
4( ) 4( )

(1.45 ) (6.5 )
D D L L D D L L

m
ss

P P P P
D

ksi

   
  

 
 


 (9-6) 

Note that the load factors are for Strength I combination D=1.25 and L=1.75 and 
for Strength IV combination D=1.5 and L=0. 

  

FIGURE 9-1 Basic Dimensional Properties of Concave Plate 

 

2) PTFE Area (APTFE) of Flat Sliding Surface. 

The flat PTFE sliding contact area at the top of the concave plate is either square 
or circular in shape.  It should be sized to the nearest 0.25inch using the modified 
limits of stress on the woven PTFE fiber in Table 9-1.  Again, as noted above, the 
factored stress limit is set at 1.45ss. That is,  
 

 
1.45 6.5

D D L L D D L L
PTFE

ss

P P P P
A

ksi

   

 

       (9-7) 
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Note that the load factors for Strength I combination are D=1.25 and L=1.75 and 
for Strength IV combination D=1.5 and L=0. 
 

3) Angle  of the Concave Bearing Surface (Figure 9-1). 

 
Angle   should be larger than the sum of the angle between vertical and 
horizontal loads and the bearing rotation (see Section 7.4 for comments on limit 
values on ).  Calculations of the angle for seismic conditions controls, so that  
 

 1 0max

min

tan ( ) 35H
E

V

P

P
        (9-9) 

 

 max ( ) 0.15( )H D L D LP P P P P       (9-10) 

 

In equation (9-9), E is the maximum among 
LE and 

TE  which are given by 

equation (9-4).  Also, note that 0.15   is the assumed value of the coefficient of 
friction for seismic load conditions (per Table 9-2).  The minimum value of the 
vertical load minVP is conservatively considered to be the lesser of the dead load 

DP  and0.5( )D LP P .   

 
4) Radius R  of the Concave Surface (see Figure 9-1). 

Radius R is calculated (see Section 7.4 for comments on limit values on R) on the 
basis of the geometry shown in Figure 9-1 as: 

 40
2sin( )

mD
R inch


      (9-11) 

 
5) Concave Plate Arc Length actDB (see Figure 9-2). 

 
 
  

The concave plate arc length actDB  is illustrated in Figure 9-2.   It is related to the 

radius R .  It is used to calculate the minimum metal depth Mm of the concave 
surface, and the angle  (Figure 9-3d) of the convex surface.   

 

 12 sin ( )
2

m
act

D
DB R

R
    (9-12) 
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FIGURE 9-2 Definition of Dimensional Quantities DBact, R, Y and Mm 

 
6) Minimum Metal Depth Mm of Concave Surface (see Figure 9-2). 

 

 
1

1 cos

1 cos sin
2

m PTFE PTFE

m
PTFE

M R Y t R t

D
R t

R





     

           

   (9-13) 

The thickness of PTFE PTFEt  typically is in the range of 1/32inch to 1/8inch.   A 

value of 0.09375inch is recommended for use in the metal depth calculation. 
 
7) Minimum Metal Thickness at Center Line Tmin (see Figure 9-3a). 
 

 The minimum thickness shall be Tmin = 0.75inch.    
 
8) Total Thickness of Concave Plate Tmax   (see Figure 9-3a). 
 
Thickness Tmax  is given by  
 

 Tmax = Tmin + Mm   (9-14) 
 

9) Plan Dimension of Concave Plate Lcp (see Figure 9-3c). 

 
 Lcp = Dm + 0.75inch       (9-15) 
 

Step 2: Convex Plate 

 
1) Angle  of Convex Plate (see Figure 9-3d). 
 

 
2

actDB

R
    

 
      (9-16) 

 

 

       R 

Dm 
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 Tmax 
   

 a. Tmin and Tmax   b. H and Hact  

 
 c. Dm and Lcp   d. Cm and   

 
FIGURE 9-3 Definition of Dimensional Quantities Tmin, Tmax, Lcp, H, Hact, Dm,  and 
Cm 

The angle  is shown in Figure 9-3d.  The value of the angle should be a 
conservative rounded figure of the combined service and seismic bearing rotations 
and should satisfy the following conditions: 
 
 

LE  and 
TE       (9-17) 

 

In equations (9-17) 
LE and 

TE  are given by equation (9-4). 

 
2) Convex Chord Length Cm (see Figure 9-3d). 
 

 2 sinmC R       (9-18) 

 
3) Height of Convex Spherical Surface H (see Figures 9-3b and 9-3d). 
 

 
2

2

2
mC

H R R      
 

   (9-19) 

4) Overall Height of Convex Plate Hact (see Figure 9-3b). 
 

 0.75actH H inch     (9-20) 

 
The height Hact includes the masonry plate recess depth (typically 0.25inch). The 
0.75inch additional height may be increased as required to provide minimum 
clearance, or to provide minimum fillet weld height. 

 

 

 

R 

 

 



167 
 

5) Minimum Vertical Clearance c (see Figure 9-4). 
 
The minimum vertical clearance c ensures that the concave plate does not come 
into contact with the base plate during maximum rotation.    

  
 For spherical bearings square in plan,  
 
 0.7 0.125cpc L inch     (9-21) 

 
 For spherical bearings circular in plan: 
 
 0.5 0.125mc D inch     (9-22) 

 
 Note that the angle   is given by equations (9-17). 
 

 
FIGURE 9-4 Definition of Dimensional Quantity c 

Step 3: Sole Plate 

The sole plate must be sized so that it remains in full contact with the concave 
plate under all loading conditions.  The sole plate can be sized as follows: 
 

 •   Longitudinal Length (in direction of bridge axis) of Sole Plate Lsp 

 

   2( 6 )
Lsp cp EL L inch       (9-23) 

 
 • Transverse Width of Sole Plate Wsp 
 

   2( 1 )
Tsp cp EW L inch         (9-24) 

 
The parameters in equations (9-23) and (9-24) are: 
 

   Lcp = length and width of concave plate 

  
LE = maximum longitudinal movement given by equation (9-3) 
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TE  = maximum transverse movement given by equation (9-3) 

 The values of 6inch and 1inch in equations (9-23) and (9-24) are minimum edge 
distances in the longitudinal and transverse directions, respectively. 

 
 • Sole Plate Thickness  
 
   Tsp≥1.5inch   (9-25) 
 

Select the thickness of the sole plate based on procedures described in Section 8.  
Some features of these procedures are presented below. 

  
1) Service Load Condition (LRFD Load Combination:  Strength I or Strength 

IV). 
 
The vertical factored load is (maximum of Strength I and Strength IV cases): 
 
 1.25 1.75v D LP P P   or 1.5v DP P    (9-26) 

 
Based on the discussion and examples of Section 8, the overturning moment 
effect may be neglected.  The concrete design bearing strength for confined 
concrete conditions is 
 

'7.1 ccb ff     (9-27) 

 
In equation (9-27) '

cf  is the concrete strength of the superstructure.  Utilize factors 

0.65c   and 0.90b  . 

          
2) Seismic Load Condition (LRFD Load Combination:  Extreme Event I). 
 
Consider the case of design earthquake (DE).  No checks are performed for the 
Maximum Earthquake (such check is required only for seismic isolators).  The 
vertical factored load is 
 

1.25 0.5
DEv D L EP P P P    (9-28) 

 
Based on the discussion and examples of Section 8, neglect any overturning 
moment and consider the vertical load acting in the deformed bearing 
configuration.   The concrete design bearing strength for confined concrete 
conditions is given by equation (9-27).  Utilize factors 0.65c   and 0.90b  . 

 
The selection of the plate thickness shall be based on the following steps: 
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o Calculate the dimension 1b  of the area of concrete carrying load (also 
equation 8-2 or equation 8-7).  If there is enough space to develop a circular 
contact area, the dimension b1 is the diameter of the area given by: 

 

 1

4 v

b

P
b

f
    (9-29a) 

 
If there is not enough space to develop a circular contact area, the area may 
be assumed to be parabolic with minor axis a1 determined from geometric 
constraints (see example 8-4) and major axis b1 determined by the following 
equation: 
 

 1
1

4 v

b

P
b

a f
  (9-29b) 

 
o Calculate the loading arm (also equation 8-3): 

 

 1

2

b b
r


    (9-30) 

 
In equation (9-30), b is the diameter of the least area over which load is 
transferred through the bearing in the vertical direction.  That is,  
 
 

 
4

min , ,PTFE
m m

A
b D C


 

  
 

 (9-31) 

 
Note the first quantity in parenthesis in equation (9-31) is the diameter of the 
flat PTFE area at the top of the concave plate if it were circular.  If the PTFE 
area is square, the quantity is the diameter of the equivalent circular area. 

 
o Calculate the required plate bending strength for unit plate length 1l   (also 

equation 8-4 multiplied by a correction factor):  
 

                       
2 2

1 1
2 3u b b

r b r
M f f CF

b

      
  

 (9-32)  

Factor CF is the correction factor given in Figure 8-5. 
 

o Calculate the required plate thickness (also equation 8-5): 
  

 
4 u

b y

M
t

F


 

(9-33) 
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In equation (9-33), 0.90b   and yF

 
is the minimum material yield strength. 

Step 4: Masonry Plate 

 
The design of the masonry plate is based on the same procedures as that of the 
sole plate.  The only difference is that the masonry plate is centrally loaded 
even when the bearing is deformed so that equation (9-29a) always applies, 
whereas equation (9-29b) does not apply.  The minimum thickness of the 
masonry plate shall be 0.75inch.  The length and width of the masonry plate 
should be selected such that they accommodate the seating of the convex plate 
as illustrated in Figure 7-1.  The recess in the masonry plate to secure the 
convex plate (see Figure 7-1) should be at least 0.25inch deep.   The convex 
plate should be welded to the masonry plate with a non-structural seal weld. 
 
The plan dimensions mpL and mpW

 
of the masonry plate shall be calculated as 

follows: 
 

 8mp mp mL W C inch    (9-34) 

  
 Step 5: Stainless Steel Plate 
 

The stainless steel plate is rectangular with dimension LSS in the longitudinal 
bridge direction and width WSS in the transverse direction.  The dimensions of 
the stainless steel plate shall be calculated as follows: 

 

 2
LSS EL B     (9-35) 

 

 2
TSS EW B       (9-36) 

 
In equations (9-35) and (9-36) B is the PTFE plan dimension (B=diameter if 
circular; B=side dimension if square) and 

LE  
and 

TE  
are given by equation 

(9-3).    
  

Step 6: Anchorage 
 
The use of shear lugs and high strength bolts A325N bolts (minimum 4 bolts) 
is recommended.  The minimum edge distance in any direction is taken 
as 2.67d , where d is the diameter of the bolt.  The design shear strength and 
minimum edge distance for high strength A325N bolts is shown in Table 9-3.  
The design shear strength was calculated as 0.75n b VR A F  , where Ab is the 

nominal bolt area and FV is the ultimate shear stress (FV=48ksi for single shear 
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and for threads in the plane of shear).  The selection of the bolt diameter could 
be conservatively based on a procedure that (a) neglects friction between the 
sole and masonry plates in contact with concrete and (b) utilizes AASHTO 
LRFD load combination Extreme I with vertical factored load 

1.25 0.5 1.5
DEv D L EP P P P    and shear factored load equal to0.15 vP .  

 
TABLE 9-3 Design Shear Strength (Rn) and Minimum Edge Distance for High 
Strength A325N Bolts  
 

Bolt Diameter  
(inch) 

Design Shear Strength  
(kip) 

Minimum Edge Distance 
(inch) 

5/8 11.0 1.7 
3/4 15.9 2.0 
7/8 21.6 2.3 
1 28.3 2.7 

1 1/8 35.8 3.0 
1 1/4 44.2 3.3 
1 3/8 53.5 3.7 
1 1/2 63.6 4.0 
High strength A356 and A490 bolts may also be used.  The use of beveled 
sole plate is not required when non-shrinking grout is used between the sole 
plate and the superstructure.  
 
The design of shear lugs may be based on ACI 318, Appendix D.6, Design 
Requirements for Shear Loading (American Concrete Institute, 2008).   These 
requirements have been cast into a form common for bearing end plates and 
are presented below.  Figure 9-5 presents a typical detail of anchorage of a 
bearing.  A bolt connects a bearing plate or a bearing flange (the latter is 
typical in Friction Pendulum bearings) to a shear lug that is embedded in 
concrete.  Non-shrinking grout (typically specified to be 2inch thick) is used 
between the plate and the concrete pedestal and around the shear lug.   Note 
that the grout is needed when the installed bearing is a replacement bearing.  
For new construction, use of grout is not necessary.  We assume that one 
anchor is used at each corner (otherwise, consult ACI-318, Appendix D.6).  
Accordingly, the projected area VcA  of the failure surface on the side of the 

concrete pedestal under action of shear load on the anchor is as shown in 
Figure 9-6 (identical to Figure RD6.2.1(b) of ACI-318).   
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FIGURE 9-5 Typical Detail of Bearing Anchorage with Shear Lug 
 
Most commonly, the edge distance 2aC  is larger than edge distance 1aC  unless the 

anchor is placed symmetrically at the corner of the pedestal.  In general, 2 11.5a aC C .  

The projected area VcA  of the failure surface should be calculated as  

 1 1 21.5 (1.5 )Vc a a aA C C C   (9-37) 

 

FIGURE 9-6 Projected Area VcA  of Failure Surface on Side of Concrete Pedestal 

The basic concrete breakout strength in shear of a single anchor in cracked concrete is 
given by equation (9-38), which is valid in the imperial system of units (dimensions in 
inch, '

cf  in psi, bV  in pounds). 
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0.2

' 1.5
17 ( )e

b a c a
a

l
V d f C

d


  
      

 (9-38) 

In equation (9-38), el  is the embedded shear lug length, ad  is the diameter of the shear 

lug, '
cf  is the concrete strength and =1.0 for normal concrete strength (see Figure 9-5 

for illustration of dimensions).   The nominal concrete breakout strength is given by 
equation (9-39): 

    , , ,
Vc

cb ed V c V h V b
Vco

A
V V

A
     (9-39) 

Area VcoA  is the projected area of a single anchor in a deep member with distance from 

the edges equal to or greater than 11.5 aC  in the direction perpendicular to the shear force.  

The area may be calculated as a rectangular area of sides 13 aC  and 11.5 aC : 

 2
14.5( )Vco aA C              (9-40) 

The parameter ,ed V
 
is a modification factor for edge effects given by  

    2
,

1

0.7 0.3 1.0
1.5

a
ed V

a

C

C
      (9-41) 

The parameter ,c V
 
should be specified as 1.0 for the typical case of anchors in cracked 

concrete with no supplemental reinforcement (otherwise is larger than unity).  The 
parameter ,h V

 
should be specified as 1.0 since the height of shear lugs is always selected 

to be less than 11.5 aC . 

The anchor is considered adequate when the factored shear load per anchor (0.15Pv 
divided by number of anchors n) is less than or equal to the design strength 0.7cb cbV V  : 

 
0.15(1.25 0.5 1.5 )0.15

0.7DED L Ev
cb cb

P P PP
V V

n n


 
    (9-42) 

The design procedure presented for shear lugs may also be used when the alternate 
connection detail of Figure 9-7 is used.  This detail, which has been used for sliding 
bearings, utilizes coupling nuts and bolts instead of shear lugs.  Again the use of grout is 
only necessary when a replacement bearing is installed.  The adequacy assessment 
procedure should follow equations (9-37) to (9-42) with dimensions da and le interpreted 
as the bolt diameter and length as shown in Figure 9-7.  It should be noted that this 
connection detail is more appropriate when the anchor is required to carry tension as in 
elastomeric bearings. (For such cases, the coupling nut may be replaced by a shear lug 
and the bolt by an anchor bolt with plate washer or just a nut.  Appendix D, page D-26 
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shows a photograph of an elastomeric bearing with the shear lugs and anchor bolts during 
installation). 

 

FIGURE 9-7 Typical Detail of Bearing Anchorage with Coupling Nut and Bolt 
 
9.5  Example 

As a design example, consider a multidirectional sliding spherical bearing with the 
following un-factored loads and movements under service and seismic DE conditions: 
 
Dead load: 260DP kip , Live load: 50LP kip   

Longitudinal service translation: 3.0
LS inch   

Transverse service translation: 0
TS   

Longitudinal axis service rotation: 0.010
LS rad     

Transverse axis service rotation: 0.023
TS rad      (use minimum recommended 

0.035rad) 
Seismic DE load: 137.5

DEEP kip  

Longitudinal seismic DE translation: 5.0
DELE inch   

Transverse seismic DE translation: 3.0
DETE inch   

Longitudinal axis seismic DE rotation: 0
DELE     

Transverse axis seismic DE rotation:
 

0.012
DETE rad      

 

Concrete Strength: ' 3250cf psi  
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-Equation 9-3 for transverse direction:  

1.5 0 1.5 3.0 4.5
T T DETE S E x inch       

   

-Equation 9-3 for longitudinal direction: 

 1.5 3.0 1.5 5.0 10.5
L L DELE S E x inch         

-Equation 9-4 for transverse direction:  

1.5 0.035 1.5 0.012 0.053
T T DETE S E x rad      

 

-Equation 9-4 for longitudinal direction: 

 1.5 0.01 0 0.01
L L DELE S E rad      

 

Step 1: Concave Plate 

-Equation 9-5 (Strength IV case controls):  

4 4 1.5 260
10.7

(4.3 ) 4.3
D D

m

P
D inch

ksi


 

 
  

 
 

-Equation 9-6 (Strength I case controls): 

4( ) 4(1.25 260 1.75 50)
9.0

(6.3 ) 6.5
D D L L

m

P P
D inch

ksi

 
 

   
  

 
.   

Equation 9-5 controls.  Round to Dm=11.00inch. 

-Equation 9-7 (Strength I case controls): 

21.25 260 1.75 50
63.5

6.5 6.5
D D L L

PTFE

P P
A in

ksi

    
   .  Use a square area with side 

B=9.50inch. 

Note that a dimension B=8.0inch would have been sufficient but then equation 9-8 would 
not satisfy the factored pressure limit of 4.3ksi.  The step below (equation 9-8) dictates  
dimension B. 

-Equation 9-8 (Strength case IV controls): 
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2

1.5 260
4.3

9.50
D

PTFE

P
ksi

A


  .   Factored pressure is within the limits of 2.2 to 4.3ksi.      

OK 

-Equations 9-9 and 9-10: 

1 1max

min

46.5
tan ( ) tan ( ) 0.053 0.344

155
H

E
V

P
rad

P
          =0.349rad (=200350) 

max 0.15( ) 0.15(260 50) 46.5H D LP P P kip      

Use 155kip. 

E is the maximum among
TE and 

LE . 0.053
TE E rad    

-Equation 9-11: 

11.0
16.08 40

2sin( ) 2sin(0.349)
mD

R inch inch


     

Use trial value R=16.25inch subject to check below. 

-Check adequacy of R based on equation (7-1) as interpreted for LRFD formulation 

 2 2sin sinPTFEH R         

For the check, 1 1 1tan tan ( ) tan (0.06) 0.06
H

rad
P

        
 

.   

Note that for a bearing with a flat sliding surface, the ratio of horizontal to vertical load is 
the friction coefficient which is defined to be equal to 0.06 for the check of equation (7-1) 
(see Section 7-4 and Table 9-2).  Also, the angle  does not include any seismic 
component, so that 0.035rad  .  Also, the permissible factored stress 
is 6.5PTFE ksi  for woven PTFE fiber.  Therefore,  

 2 2 2 2sin sin 16.25 6.5 sin (0.349 0.06 0.035)sin(0.06) 20.4PTFEH R x x x kip            

0.06 1.5 260 23.4 20.4D DH P x x kip kip      for the case of load combination 

Strength I. Also, for the case of load combination Strength IV,  

( ) 0.06 (1.25 260 1.75 50) 24.8 20.4D D L LH P P x x x kip kip         

NG, the radius needs to be increased.   

min 0.5( ) 155 260V D L DP P P kip P kip    
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Select R=18inch, for which equation (7-1) predicts a limit of 25.0kip.  Therefore, 
H=25.0kip<24.8kip, thus sufficient. 

Use R=18.00inch. 

-Equation 9-12: 

1 11
2 sin ( ) 2 18sin( ) 10.83

2 2 18
m

act

D
DB R x inch

R x
    

-Equation 9-13: 

1 1 11
1 cos sin 18 1 cos sin 0.09375 0.955

2 2 18
m

m PTFE

D
M R t inch

R x
                                  

 

-Equations 9-14 and 9-15: 

Tmin = 0.75inch  

Tmax = Tmin + Mm =0.75+0.955=1.705inch.  Use Tmax=1.75inch. 

Lcp = Dm + 0.75inch=11.00+0.75.   Lcp =11.75inch.    

Step 2: Convex Plate 

-Equations 9-16 and 9-17: 

 
10.83

0.053 0.354
2 2 18

actDB
rad

R x
       

 
(=20.3o) 

Angle   is equal to 0.053rad  . 

-Equation 9-18: 

2 sin 2 18sin(0.354) 12.48mC R x inch   .  Use Cm=12.50inch. 

-Equations 9-19 and 9-20: 

2 2
2 2 12.5

18 18 1.12
2 2

mC
H R R inch            

   
 

0.75 1.12 0.75 1.87actH H inch     .  Use 2.00actH inch . 

-Equation 9-21 (for square plan): 
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0.7 0.125 0.7 11.75 0.053 0.125 0.561cpc L x x inch      

Step 3: Sole Plate 

-Equations 9-23 and 9-24: 

2( 6) 11.75 2(10.5 6.0) 44.75
Lsp cp EL L inch         

2( 1) 11.75 2(4.5 1.0) 22.75
Tsp cp EW L inch         

-Sole plate thickness, equations (9-26) for service load conditions and (9-28) for seismic 
conditions: 

 1.5 1.5 260 390v DP P kip     

1.25 1.75 1.25 260 1.75 50 412.5v D LP P P x x kip      

1.25 0.5 1.25 260 0.5 50 137.5 487.5
DEv D L EP P P P x x kip        CONTROLS 

-Equation (9-27): 

'1.7 1.7 0.65 3.25 3.59b c cf f x x ksi    

-Equation (9-29a): 

 

 

A check is needed to verify that a circular contact area is possible.  The drawing below 
shows the plan of the bearing (it includes information on the stainless steel plate 
dimensions that are determined in step 5 further down).  Note that the sole plate has 
dimensions 44.75inch by 22.75inch, the stainless steel plate has dimensions 30.50inch by 
18.50inch and the PTFE contact area is 9.50inch square.  Note that in the schematic 

below the PTFE area is shown at displacement 10.5
LE inch  , which is for the MCE.  

Clearly the circular contact area of 13.15inch diameter can develop. 

1

4 4 487.5
13.15

3.59b

P x
b inch

f x 
  
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-Equation (9-31): 

24 4 9.5
min , , min ,11.0,12.5 10.72PTFE

m m

A x
b D C inch

 

  
         

 

-Equation (9-30): 

1 13.15 10.72
1.22

2 2

b b
r inch

 
    

-Equation (9-32) with correction factor CF    

2 2 2 2
1 1.22 13.15 1.22

1 3.59 3.59 1 1.0 3.08 /
2 3 2 10.72 3u b b

r b r
M f f CF x x x kip in in

b

                   
      

-Equation (9-33): 

4 4 3.08
0.62

0.9 36
u

b y

M x
t inch

F x
   .    Use minimum thickness for sole plate of 1.5inch. 

Step 4: Masonry Plate 

-Equation (9-34) 

8 12.50 8 20.50mp mp mL W C inch      Lmp=Wmp=20.50inch. 
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-Equations (9-23) to (9-33) apply for the masonry plate.  As concrete strength is the 
same, the required plate thickness is 0.62inch.  Use minimum thickness for masonry plate 

of 0.75inch.  Add recess depth of 0.25inch, so that 1.0mpT inch . 

Step 5: Stainless Steel Plate 

-Equations (9-35) and (9-36) 

2 9.50 2 10.5 30.50
LSS EL B x inch     

 

2 9.50 2 4.5 18.50
TSS EW B x inch       

Step 6: Anchorage 

Horizontal factored load 

0.15 0.15(1.25 0.5 1.5 ) 0.15(1.25 260 0.5 50 1.5 137.5) 83.4
DEH v D L EP P P P P x x x kip       

 
Use 4 A325N bolts; required strength 83.4/4=20.9kip.  Use diameter 7/8inch bolts 
(design strength=21.6kip). 
 
For shear lugs select da=4.0inch, le=9.0inch, Ca1= Ca2=12.0inch. 
 
-Equation (9-37) 
 

2
1 1 21.5 (1.5 ) 1.5 12(1.5 12 12) 540Vc a a aA C C C x x in      

 
-Equation (9-38) 
 

0.2 0.2
' 1.5 1.5

1

9
7 ( ) 7 4 1 3250(12) 41330 41.3

3
e

b a c a
a

l
V d f C x x lb kip

d


                      

 

-Equations  (9-39), (9-40) and (9-41) 

 
2 2 2

14.5( ) 4.5(12) 648Vco aA C in    
2

,
1

12
0.7 0.3 0.7 0.3 0.9 1.0

1.5 1.5 12
a

ed V
a

C

C x
      

 
, , 1.0c V h V  
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, , ,

540
0.9 1.0 1.0 41.3 31.0

648
Vc

cb ed V c V h V b
Vco

A
V V x x x x kip

A
    

 
-Equation (9-42) 
OK 
 

Note that the vertical load was calculated in step 3 above for the seismic conditions.  
Also, note that a major contributor to the nominal concrete breakout strength is the edge 
distances Ca1 and Ca2 which affect the projected area of the failure surface.  Herein, the 
use of Ca1= Ca2=12inch resulted in a just adequate design.  Use of Ca1= Ca2=24inch 
would have resulted in Vcb=87.7kip, which is about three times larger than the required 
strength. 
 
Figure 9-8 shows drawings of the bearing.   
 

 Convex Concave Sole Masonry 

Cm Hact  c R Dm Tmax Tmin Lcp Lsp Tsp Wsp Tmp Lmp Wmp 
12.50 2.00 0.56 18.00 11.00 1.75 0.75 11.75 44.75 1.50 22.75 1.00 20.50 20.50 

 
PTFE  

Square Side 
B  

Stainless Steel 
Plate Length 

LSS  

Stainless Steel 
Plate Width 

WSS  
9.50 30.50 18.50 

FIGURE 9-8 Example Multidirectional PTFE Spherical Bearing (units: inch) 
 

0.15 / 83.4 / 4 20.9 0.7 0.7 31.0 21.7v cbP n kip V x kip    
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FIGURE 9-8 Example Multidirectional PTFE Spherical Bearing-continued (units: 
inch)  
 
Figure 9-9 shows an installation detail of the bearing.  Note that grout is only necessary 
when the installation is that of a replacement bearing. 

 

 
 

FIGURE 9-9 Connection Details of Multidirectional PTFE Spherical Bearing with 
Shear Lugs 



183 
 

SECTION 10 
DESCRIPTION OF EXAMPLE BRIDGE 

 
10.1 Introduction 
 
A bridge was selected to demonstrate the application of analysis and bearing design 
procedures for seismic isolation. The bridge was used as an example of bridge design 
without an isolation system in the Federal Highway Administration Seismic Design 
Course, Design Example No.4, prepared by Berger/Abam Engineers, Sep. 1996 
(document available through NTIS, document no. PB97-142111). 
 
The bridge is a continuous, three-span, cast-in-place concrete box girder structure with a 
30-degree skew. The two intermediate bents consist of two circular columns with a cap 
beam on top. The geometry of the bridge, section properties and foundation properties are 
assumed to be the same as in the original bridge in the FHWA example. It is presumed 
(without any checks) that the original bridge design is sufficient to sustain the loads and 
displacement demands when seismically isolated as described herein. Only minor 
changes in the bridge geometry were implemented in order to facilitate seismic isolation 
(i.e., use of larger expansion joints, use of separate cross beam in bents instead of one 
integral with the box girder and columns that are fixed at the footings). 
 
10.2 Description of the Bridge 
 
Figures 10-1, 10-2 and 10-3 show, respectively, the plan and elevation, the abutment 
sections and a section at an intermediate bent. In Figure 10-3 the bent is shown at the 
skew angle of 30 degrees, whereas for the box girder the section is perpendicular to the 
longitudinal axis. The actual distance between the column centerlines is 26 feet (see 
Figure 10-1).  
 
The bridge is isolated with two isolators at each abutment and pier location for a total of 
8 isolators. The isolators are directly located above the circular columns. The use of two 
isolators versus a larger number is intentional for the following reasons: 
 

a) It is possible to achieve a larger period of isolation with elastomeric bearings 
(more mass per bearing). 

b) The distribution of load on each isolator is accurately calculated. The use of more 
than two isolators per location would have resulted in uncertainty in the 
calculation of the axial load in vertically stiff bearings such as the FP bearings. 

c) Cost is reduced. 
 
Vertical diaphragms in the box girder at the abutment and pier locations above the 
isolators are included for distribution of load to the bearings. These diaphragms introduce 
an additional 134 kip weight at each diaphragm location. 
 
The bridge is considered to have three traffic lanes. Loadings were determined based on 
AASHTO LRFD Specifications (AASHTO, 2007, 2010) with live load consisting of 
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truck, lane and tandem and wind load being representative of typical sites in the Western 
United States. 

FIGURE 10-1 Bridge Plan and Elevation 

 
 
FIGURE 10-2 Sections at Abutment 
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FIGURE 10-3 Cross Section at Intermediate Bent 
 
Figure 10-4 shows a model for the analysis of the bridge. The model may be used in 
static, multimode analysis (response spectrum analysis) and response history analysis. 
The cross sectional properties of the bridge and weights are presented in Table 10-1. The 
modulus of elasticity of concrete is E =3,600ksi. Foundation spring constants are 
presented in Table 10-2. The latter were directly obtained from Federal Highway 
Administration Seismic Design Course, Design Example No.4, prepared by Berger/Abam 
Engineers, Sep. 1996. 
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10.3 Analysis of Bridge for Dead, Live, Brake and Wind Loadings 
 
The weight of the seismically isolated bridge superstructure is 5092kip, which is more 
than the weight reported in Federal Highway Administration Seismic Design Course, 
Design Example No.4, prepared by Berger/Abam Engineers, Sep. 1996. The difference is 
due to the introduction of diaphragms at the abutment and pier locations in order to 
transfer loads to the bearings. 
 
Appendix B presents calculations for the bearing loads, displacements and rotations due 
to dead, live, braking and wind forces, thermal changes and other. Table 10-3 presents a 
summary of bearing loads and rotations. On the basis of the results in Table 10-3, the 
bearings do not experience uplift or tension for any combination of dead and live 
loadings. 
 
TABLE 10-1 Cross Sectional Properties and Weights in Bridge Model 
 

Element/ 
Property 

Box 
Girder 

Bent 
Cap 

Beam 

 
Column 

Rigid 
Girder 

Rigid 
Column 

Rigid 
Footing 

Area 

XA 1(ft2) 
72.74 

 
24.00 12.57 200 200 200 

Shear 
Area 

YA 1(ft2) 

24.20 24.00 12.57 200 200 200 

Shear 
Area 

ZA 1(ft2 

57.00 24.00 12.57 200 200 200 

Moment 
of Inertia 

YI (ft4) 

9,697 32.00 8.802 100,000 100,000 100,000 

Moment 
of Inertia 

ZI (ft4) 

401 72.00 8.802 100,000 100,000 100,000 

Torsional 
Constant 

XI (ft4) 

1,770 75.26 25.14 100,000 100,000 100,000 

Weight 
(kip/ft) 

14.243 5.26 1.89 0 0 58.84 

1: coordinates x, y and z refer to the local member coordinate system 
2:cracked section properties ( 0.70 gI ) 
3: add 134kip concentrated weight at each bent and abutment location (diaphragm) 
4: total weight of footing divided by length of 1.75ft
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FIGURE 10-4  Model of Bridge for Multimode or Response History Analysis 
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TABLE 10-2 Foundation Spring Constants in Bridge Model 
 

 
Constant 

'XK  
(kip/ft) 

'YK  
(kip/ft) 

'ZK  
(kip/ft) 

'rXK  
(kip-

ft/rad) 

'rYK  
(kip-

ft/rad) 

'rZK  
(kip-

ft/rad) 
 

Description 
Vertical 
stiffness 

Transverse 
stiffness 

Longitudinal 
stiffness 

Torsional 
stiffness 

Rocking 
stiffness 
about 'y   

Rocking 
stiffness 
about 'z  

Value 94,400 103,000 103,000 1.15x107 7.12x106 7.12x106 
 
TABLE 10-3 Bearing Loads and Rotations due to Dead, Live, Brake and Wind 
Loads 
 

 
Loading 

Abutment Bearings  
(per bearing) 

Pier Bearings  
(per bearing) 

Reaction (kip) Rotation (rad) Reaction (kip) Rotation (rad) 
Dead Load V +336.5 0.00149 V +936.5 0.00006 
Live Load  

(truck, tandem 
or lane) 

V +137.2 
V -15.6 

0.00057 V +247.6 
V -18.8 

0.00040 

HL93 
(Live+IM+BR) 

V +187.7 
V -26.8 

0.00090 V +348.4 
V -31.2 

0.00064 

Braking (BR) V +3.2 
V -3.2 

0.00006 V +4.1 
V -4.1 

0.00004 

Wind on Live 
Load (WL) 

V +2.4 
V -2.4 
T 2.3 

 
NEGLIGIBLE 

V +6.9 
V -6.9 
T 6.5 

 
NEGLIGIBLE 

Wind on 
Structure 

(WS) 

V +2.4 
V -2.4 
T 5.9 

 
NEGLIGIBLE 

V +7.6 
V -7.6 
T 18.9 

 
NEGLIGIBLE 

Vertical Wind 
on Structure 

(WV) 

 
V -31.9 

 
NEGLIGIBLE 

 
V -102.9 

 
NEGLIGIBLE 

V: Vertical reaction, T: Transverse reaction, +: compressive force, -: tensile force 

 
Based on the results of the service load analysis the loads, displacements and rotations to 
be considered for the analysis and design of the bearings are tabulated in Table 10-4.  
Note that distinction between cyclic and static components of loads, displacements and 
rotations is needed for this purpose.   Moreover, service displacements (thermal, post-
tensioning, creep and shrinkage related displacements) as described in Appendix B are 
included in Table 10-4.  Note that displacements and rotations have been rounded to 
minimum conservative values.  These include a minimum 0.001rad cyclic rotation and an 
added 0.005rad static component of rotation to account for construction tolerances.  Also, 
the service displacements are about triple the values calculated for thermal effects in 
Appendix B to account for installation errors, and concrete post-tensioning, shrinkage 
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and creep displacement prediction errors (bearings will be pre-deformed to the estimated 
displacements due to post-tensioning, creep and shrinkage). 
 
TABLE 10-4 Bearing Loads, Displacements and Rotations for Service Conditions 
 

 
Loads, 

Displacements 
and Rotations 

Abutment Bearings  
(per bearing) 

Pier Bearings  
(per bearing) 

Static 
Component 

Cyclic 
Component 

Static 
Component 

Cyclic 
Component 

Dead Load PD 
(kip) 

+336.5 NA +936.5 NA 

Live Load PL  
(kip) 

+37.7 
-5.3 

+150.0 
-21.5 

+73.4 
-6.2 

+275.0 
-25.0 

Displacement (in) 3.0 0 
 

1.0 0 
 

Rotation (rad) 0.007 0.001 0.005 0.001 

 +: compressive force, -: tensile force 

 
10.4 Seismic Loading 
 
Seismic loading is defined per Section 5.6 herein.  The Design Earthquake (DE) response 
spectra were obtained from the Caltrans ARS website 
(http://dap3.dot.ca.gov/shake_stable/index.php) for a location in California with latitude 
38.079857o, longitude -122.232513o and shear wave velocity ( 30SV  ) equal to 400m/sec.  
The response spectrum for the site is the greatest among the spectra calculated for the 
site, which for this location was the one of the 2008 USGS National Hazard Map for a 
5% probability of being exceeded in 50 years.  Figure 10-5 presents the 5%-damped 
acceleration response spectrum of the Design Earthquake. 
 

Dynamic response history analysis requires that ground motions be selected and scaled to 
represent the response spectrum as described is Section 3.9.  Seven pairs of ground 
motions were selected for scaling in order to use average results of dynamic analysis.  
Table 10-5 lists the 7 pairs of ground motions selected for the analysis. The motions were 
selected to have near-fault characteristics.  Each pair of the seed ground motions has been 
rotated to fault-normal and fault-parallel directions. The moment magnitudes for the seed 
motions are between 6.7 and 7.1; the site-to-source distances (Campbell R distance) are 
between 3 and 12 km; and all the records are from Site Classes C and D per the 2010 
AASHTO Specifications (also Imbsen, 2006 and in the 2010 revision of AASHTO Guide 
Specifications for Seismic Isolation Design). The ground-motion pair No. 1 is from a 
backward-directivity region and all other motions are from forward-directivity regions 
(PEER-NGA database, http://peer.berkeley.edu/nga/).  Note that the motions are identical 
to those used in the examples in Constantinou et al (2007b). 
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FIGURE 10-5  Horizontal 5%-Damped Response Spectrum of the Design 
Earthquake  

The selected seed motions were scaled as follows: 

a) Each pair of the seed motions No. 1 through 7 of Table 10-5 was amplitude scaled 
by a single factor to minimize the sum of the squared error between the target 
spectral values of the target spectrum and the geometric mean (square root of the 
product of the spectral acceleration values of the two components) of the spectral 
ordinates for the pair at periods of 1, 2, 3 and 4 seconds. The weighting factor at 1 
second was w1=0.1 and the factors at 2, 3 and 4 seconds were w2=w3=w4=0.3. 
This scaling procedure seeks to preserve the record-to-record dispersion of 
spectral ordinates and the spectral shapes of the seed ground motions.   That is, 
each of the seven motions, denoted by subscript J (J=1 to 7) were scaled in 
amplitude only by factor JF  in order to minimize the error EJ between the scaled 

motion geometric mean spectrum J FN FPF S S and the target DE spectrum, DES : 

 
4 2

1
( ) ( ) ( )i i i iJ DE J FN FP

i
E w S T F S T S T



 
 

    (10-1) 

 
Equation (10-1) results in the following direct expression for the scale factor FJ: 

 

4

1
4

1

( ) ( ) ( )

( ) ( )

i i i iDE FN FP
i

J

i i iFN FP
i

F

w S T S T S T

w S T S T









 (10-2) 
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Scale factor FJ is listed in Table 10-5 for each of the motions. 

 

TABLE 10-5  Seed Accelerograms and Scale Factors 

No  
Earthquake  

Name 
Recording Station WM 1 r 2 

(km) 
Site3 

Scale 
Factor 

Based on 
Weighted 
Scaling 

(FJ) 

Scale 
Factor  

to Meet 
Minimum 

Acceptance 
Criteria 

 

Final 
Scale 
Factor 

1 
1976 Gazli, 

USSR 
Karakyr 6.80 5.46 C 

1.24 
1.14 

1.37 

2 
1989 Loma 

Prieta 
LGPC 6.93 3.88 C 

0.85 
0.78 

0.94 

3 
1989 Loma 

Prieta 
Saratoga,  

W. Valley Coll. 
6.93 9.31 C 

1.42 
1.31 

1.57 

4 
1994 

Northridge 
Jensen Filter 

Plant 
6.69 5.43 C 

0.88 
0.81 

0.97 

5 
1994 

Northridge 
Sylmar,  

Coverter Sta. East
6.69 5.19 C 

 
0.81 0.75 

0.90 

6 
1995 Kobe, 

Japan 
Takarazuka 6.90 3.00 D 

0.88 
0.81 

0.97 

7 
1999 Duzce, 

Turkey 
Bolu 7.14 12.41 D 

0.94 
0.87 

1.04 

1. Moment magnitude 
2. Campbell R distance 
3. Site class classification per 2010 AASHTO Specifications 

            
 

b) The SRSS (square root of sum of squares) of the 5%-damped spectra of the scaled 
motions were calculated and the average of the 7 SRSS spectra was constructed 
for periods in the range of 1 to 4 second.  This mean of SRSS spectra was 
compared to the target spectrum times 1.3.  To meet the minimum acceptable 
criteria per Section 3.9 (also ASCE 7-2010), the average of SRSS spectra was 
multiplied by a single scale factor so that it did not fall below 1.3 times the target 
spectrum by more than 10-percent in the period range of 1 to 4 second.  A scale 
factor for each pair of seed motions was calculated as the scale factor determined 
in the scaling described in part a) above times the single scale factor determined 
in part b).  This final scale factor meets the minimum acceptance criteria per 
Section 3.9 and is also listed in Table 10-5 for each of the seed motions.  Figure 
10-6 presents the 5%-damped mean SRSS spectra of the 7 scaled motions and the 
target DE spectrum multiplied by 0.9x1.3 (lower bound for mean SRSS spectrum-
see Section 3.9).  It may be seen that the scaled motions have the average SRSS 
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spectrum above the lower acceptable bound over the entire period range.  The 
scaled motions need to satisfy the lower bound acceptable criterion over the 
period range 0.5 effT to1.25 effT , which was selected to be the range of 1 to 4sec in 

order to be able to use the motions for a range of isolation system properties. 
 

 
FIGURE 10-6 Comparison of Average SRSS Spectra of 7 Scaled Ground Motions 
that Meet Minimum Acceptance Criteria to 90% of Target Spectrum Multiplied by 
1.3 
 

c) The minimum acceptance criteria of Section 3.9 do not necessarily ensure proper 
representation of the target spectrum.  For this, the average geometric mean 
spectra of the scaled motions were compared to the target spectrum in the period 
range of interest-herein, 1 to 4 second.  Figure 10-7 compares the target DE 
spectrum to the average geometric mean spectra of the seed motions after scaling 
by the factors of Table 10-5, namely the weighted scale factor, the minimum scale 
factor and a final scale factor.  The latter produces a closer match of the target 
spectrum and the average geometric mean spectrum of the scaled motions than the 
other two scale factors.  Values of this factor are also reported in Table 10-5 and 
were derived by simply multiplying the weighted scale factor by 1.1. 
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FIGURE 10-7 Comparison of Average Geometric Mean Spectra of 7 Scaled Ground 
Motions to Target DE Spectrum 
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SECTION 11 
DESIGN AND ANALYSIS OF TRIPLE FRICTION PENDULUM ISOLATION 

SYSTEM FOR EXAMPLE BRIDGE 

 
11.1 Single Mode Analysis 
 
Criteria for applicability of single mode analysis have been presented in Table 3-4. 
Appendix C presents the calculations for the analysis and safety check of the isolation 
system. Note that all calculations were based on a minimum plate thickness equal to 
2inch.  Adequacy checks at the end required that the thickness be increased to 2.25inch, 
so that the bearing height increased to 12.5inch.  The selected bearing is a Triple Friction 
Pendulum with the geometry shown in Figure 11-1. The height of the bearing is 12.5inch.  
The displacement capacity of the bearing is 30inches, which is sufficient to accommodate 
the displacement in the maximum earthquake plus portion of the displacement due to 
service loadings. The bearings should be installed pre-deformed in order to accommodate 
displacements due to post-tensioning and shrinkage.  

 
FIGURE 11-1  Triple Friction Pendulum Bearing for Bridge Example 
 
Note that all criteria for applicability of the single mode method of analysis are met. 
Specifically, the effective period in the Design Earthquake (DE) is equal to or less than 
3.0sec (limit is 3.0sec), the system meets the criteria for re-centering and the isolation 
system does not limit the displacement to less than the calculated demand.   Nevertheless, 
dynamic response history analysis will be used to design the isolated structure but subject 
to limits based on the results of the single mode analysis. 
 
Table 11-1 presents a summary of the calculated displacement and force demands, the 
effective properties of the isolated structure and the effective properties of each type of 

44” 

d1=d4=14” 

2.25” 

d2=d3=2” 
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bearing. These properties are useful in response spectrum, multi-mode analysis. The 
effective stiffness was calculated using 

 eff
e D

W W
K

R D
   (11-1) 

 
TABLE 11-1  Calculated Response using Simplified Analysis and Effective 
Properties of Triple FP Isolators 

Parameter 
Upper 
Bound 

Analysis 

Lower 
Bound 

Analysis 

 Displacement in DE DD (in)1 10.2 11.7 

Base Shear/Weight1 0.171 0.133 

Pier Bearing Seismic Axial Force in MCE (kip)2 860.0 860.0 

Effective Stiffness of Each Abutment Bearing in DE effK  

(k/in) 
6.92 4.59 

Effective Stiffness of Each Pier Bearing in DE effK  (k/in) 14.20 10.06 

Effective Damping in DE 0.300 0.297 

Damping Parameter B in DE 1.711 1.706 

Effective Period in DE effT  (sec) 

(Substructure Flexibility Neglected) 

 
2.47 

 
3.00 

Effective Period in DE effT  (sec) 

(Substructure Flexibility Considered) 

 
2.66 

 
NA 

1 Based on analysis in Appendix C for the DE. 
2 Value is for 100% vertical+30% lateral combination of load actions (worst case for FP bearing safety 

check), calculated for the DE, multiplied by factor 1.5 and rounded up.  Abutment bearings not 
considered as load is less and not critical.

 
In equation (11-1), 12 2 84 168e effR R x inch   (see Appendix C) and (a) W is equal to 

336.5kip for each abutment bearing, and friction coefficient   is equal to 0.090 for lower 
bound and 0.149 for upper bound of the abutment bearings, and (b) W is equal to 
936.5kip for each pier bearing and friction coefficient   is equal to 0.056 for lower 
bound and 0.094 for upper bound of the pier bearings. 
 
11.2 Multimode Response Spectrum Analysis 
 
Multimode response spectrum analysis was not performed. However, the procedure is 
outlined in terms of the linear properties used for each isolator and response spectrum 
used in the analysis.  For the analysis, each isolator is modeled as a vertical 3-
dimensional beam element-rigidly connected at its two ends.  Each element has length h , 
area A , moment of inertia about both bending axes I  and torsional constant J . The 
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element length is the height of the bearing, 12inchh   and its area is the area that carries 
the vertical load which is a circle of 12inch diameter. Note that the element is 
intentionally used with rigid connections at its two ends so that P  effects can be 
properly accounted for in the case of the Triple FP bearing. (In the case of single FP 
bearing, the beam element should have a moment release at one end so that the entire P  
moment is transferred to one end of the element).  
 
To properly represent the axial stiffness of the bearing, the modulus of elasticity is 
specified to be related but less than the modulus of steel, so E=14,500ksi. (The bearing is 
not exactly a solid piece of metal so that the modulus is reduced to half to approximate 
the actual situation). Torsional constant is set J =0 or a number near zero since the 
bearing has insignificant torsional resistance. Moreover, shear deformations in the 
element are de-activated (for example, by specifying very large areas in shear). The 
moment of inertia of each element is calculated by use of the following equation 

 
3

12
effK h

I
E

  (11-2) 

where effK
 
is the effective stiffness of the bearing calculated in the simplified analysis 

(see Table 11-1). Values of parameters h , A , I and E  used for each bearing type are 
presented in Table 11-2. 
TABLE 11-2 Values of Parameters h , A , I and E for Each Bearing in Response 
Spectrum Analysis of Triple FP System 

Bearing 
Location 

Parameter 
Upper Bound 

Analysis 
Lower Bound 

Analysis 

Abutment 

Effective Horizontal 
Stiffness effK (k/in) 

6.92 4.59 

Height h (in) 12.0 12.0 
Modulus E (ksi) 14,500 14,500 

Area A (in2) 113.1 113.1 
Moment of Inertia I (in4) 0.06872 0.04558 

Pier 

Effective Horizontal 
Stiffness effK (k/in) 

14.20 10.06 

Height h (in) 12.0 12.0 
Modulus E (ksi) 14,500 14,500 

Area A (in2) 113.1 113.1 
Moment of Inertia 

I (in4) 
0.14102 0.0999 

 
Response spectrum analysis requires the use of the response spectrum of Figure 10-5 
(5%-damped spectrum) after division by parameter B for periods larger than or equal to 
0.8 effT , where effT

 
is the effective period and B is the parameter that relates the 5%-

damped spectrum to the spectrum at the effective damping. Quantities effT , B and the 

effective damping are presented in Table 11-1. It should be noted that these quantities are 
given in Table 11-1 for the upper and lower bound cases, both of which must be 
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analyzed. Values of 0.8 effT
 
are 2.0 sec for upper bound analysis and 2.4 sec for lower 

bound analysis. Values of spectral acceleration required for use in the analysis are 
presented in Table 11-3. 

 
TABLE 11-3 Spectral Acceleration Values for Use in Response Spectrum Analysis 
of Isolated Bridge with Triple FP System 

Period T 
(sec) 

Spectral 
Acceleration for 

5%-Damping (g)1 

Spectral Acceleration 
for Upper Bound 

Analysis (g) 

Spectral Acceleration 
for Lower Bound 

Analysis (g) 
0.00 0.540 0.540 0.540 
0.10 1.006 1.006 1.006 
0.20 1.213 1.213 1.213 
0.30 1.179 1.179 1.179 
0.40 1.070 1.070 1.070 
0.50 0.992 0.992 0.992 
0.60 0.922 0.922 0.922 
0.70 0.871 0.871 0.871 
0.80 0.819 0.819 0.819 
0.90 0.767 0.767 0.767 
1.00 0.725 0.725 0.725 
1.20 0.606 0.606 0.606 
1.40 0.521 0.521 0.521 
1.60 0.457 0.457 0.457 
1.80 0.407 0.407 0.407 
1.90 0.386 0.386 0.386 
1.99 0.367 0.367 0.367 
2.00 0.367 0.214 0.367 
2.20 0.328 0.192 0.328 
2.39 0.296 0.173 0.296 
2.40 0.296 0.173 0.174 
2.60 0.269 0.157 0.158 
2.80 0.246 0.144 0.144 
3.00 0.227 0.133 0.133 
3.20 0.210 0.123 0.123 
3.40 0.195 0.114 0.114 
3.50 0.188 0.110 0.110 
3.60 0.182 0.106 0.107 
3.80 0.171 0.100 0.100 
4.00 0.160 0.094 0.094 
4.20 0.153 0.089 0.090 
4.40 0.147 0.086 0.086 
4.60 0.140 0.082 0.082 
4.80 0.135 0.079 0.079 
5.00 0.130 0.076 0.076 

1  Vertical excitation spectrum is 0.7 times the 5%-damped horizontal spectrum 
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11.3 Dynamic Response History Analysis 
 
11.3.1 Introduction 
 
Dynamic response history analysis was performed using the seven scaled motions 
described in Section 10.4 for the Design Earthquake (DE).  The scale factors utilized are 
the “Final Scale Factors” in Table 10-5.  Note that dynamic analysis was performed only 
for the DE, the results of which were utilized in design after multiplication by factor 1.5 
per requirements described in Section 3.4. 
 
11.3.2 Modeling for Dynamic Analysis 
 
The isolated bridge structure was modeled in the program SAP2000 (CSI, 2002) using 
the bridge model described in Section 10 but with the isolators modeled as nonlinear 
elements.  The Triple Friction Pendulum bearing were modeled using the parallel model 
described in Sarlis et al (2009, 2010).  In this model, each bearing is represented by two 
Friction Pendulum elements, FP1 and FP2, in SAP2000 that extend vertically between 
two shared nodes at the location of the bearing.  The distance between the shared nodes is 
the height of the bearing (in the multimode analysis, the same two nodes formed the ends 
of a vertical beam element representing the isolator) and with specified shear deformation 
at mid-height. Each element has the following degrees of freedom (DOF): 
 

a) Axial DOF, designated as U1.  This DOF is linear and the elastic vertical 
stiffness must be specified.  For the FP bearing, the elastic vertical stiffness was 
estimated as that of a column having the height of the bearing, diameter of the 
inner slider and modulus of elasticity equal to one half the modulus of elasticity 
of steel in order to account for the some limited flexibility in the bearing, which 
is not a solid piece of metal.  The calculated vertical stiffness was then equally 
divided between the two elements comprising the bearing in order to ensure that 
they equally share the axial load. 
 

b) Shear DOF in the two orthogonal directions, designated as U2 and U3.  For 
elastic analysis, the stiffness associated with these two DOF should be specified 
to be the effective isolator stiffness calculated in the single mode analysis.  For 
nonlinear analysis, the radius, supported weight, frictional parameters 
FRICTION FAST, FRICTION SLOW and RATE, and elastic stiffness need to 
be specified.  More details are provided below. 

 
c) Torsional DOF, designated as R1.  The torsional stiffness (elastic DOF) for FP 

isolators is very small and specification of zero value is appropriate. 
 

d) Rotational DOF, designated as R2 and R3.  The rotational stiffness (elastic 
DOF) is very small and should be specified as zero so that the structural 
elements above and below the element are allowed to rotate as needed. 
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Table 11-4 presents expressions for key parameters of the parallel model of the triple FP 
bearings as described in Sarlis et al (2009).   
 
TABLE 11-4 Parameters of Parallel Model of Triple FP Bearing in SAP2000 

Element Friction Coefficient1 
Radius of 
Curvature 

Elastic 
Stiffness2 

Rate 
Parameter3 

FP1 2 32 2    

Infinite (flat 
slider).  Specify 

zero in 
SAP2000 

2

2

W
K

Y




 
Y=0.04inch

 

 
 

1.27sec/inch 

FP2 
1 2

1 2
1

)
2( )( eff eff

eff

R R

R


  1effR  

22 eff

W
K

R
  

 
 

1.27sec/inch 

1 1 4   and 2 3   are the friction coefficients at interfaces 1, 2, etc of the bearing (see Appendix C).   

Also, 1 4eff effR R , 2 3eff effR R are the effective radii of surfaces 1, 2, etc. 

2 Load W is the load carried by the bearing.  Each of the FP1 and FP2 elements carries load W/2.  The   
elastic stiffness of element FP1 is calculated for yield displacement Y=0.04inch.  Other values may be 

used.  Quantity 2 / 2 is the value of friction coefficient under quasi-static conditions. 

3 Rate parameter for both elements is selected to be half of the actual value (typically assumed to be 
2.54sec/in=1sec/m) as they experience sliding velocity that is half that of the relative velocity of the top and 
bottom joints of the element.   
 
Table 11-5 presents the values of the parameters used in the SAP2000 model of each 
triple FP bearing.  
 
11.3.3 Response History Analysis Results 
 
Tables 11-6 and 11-7 present the results of lower bound and upper bound response 
history analysis.  The analysis was performed with the program SAP2000, Version 
14.1.0, using the Fast Nonlinear Analysis (FNA) method with a large number of Ritz 
vectors (129) so that the results are basically exact.  Analysis was performed with the 
fault-normal and fault-parallel components along the longitudinal and transverse 
directions, respectively and then the analysis was repeated with the components rotated.  
The results presented in the tables consist of the resultant isolator displacements and the 
longitudinal and transverse shear forces at the pier and abutment locations.  Results on 
isolator axial forces and internal forces in deck and substructure elements were calculated 
but not presented.  It should be noted that the analysis does not include the effects of 
accidental torsion. 
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An important specification in obtaining the results of Tables 11-6 and 11-7 is that of 
structural damping.  Herein, the global damping matrix was assembled by specifying 
modal damping to be 2% of critical in each mode of vibration. 
 
TABLE 11-5 Parameters of Triple FP Bearings for Response History Analysis  

Parameter 
Upper Bound Analysis Lower Bound Analysis 
Abutment Pier Abutment Pier 

Supported Weight (kip) 336.5 936.5 336.5 936.5 
Dynamic Mass1 (kip-s2/in) 0.001 0.002 0.001 0.002 

Link Element FP1 and FP2 
Height2 (in) 

12.0 12.0 12.0 12.0 

Link Element FP1 and FP2 
Vertical Stiffness3 (kip/in) 

68,000 68,000 68,000 68,000 

Link Element FP1 Friction Fast 
(fmax) 

0.2880 0.1160 0.1740 0.0700 

Link Element FP2 Friction Fast 
(fmax) 

0.0101 0.0710 0.0051 0.0423 

Link Element FP1 Friction 
Slow (fmin) 

0.1440 0.0580 0.0870 0.0350 

Link Element FP2 Friction 
Slow (fmin) 

0.0051 0.0355 0.0025 0.0211 

Link Element FP1 Elastic 
Stiffness (kip/in)  

605.7 679.0 365.9 409.7 

Link Element FP2 Elastic 
Stiffness4 (kip/in) 

10.94 30.45 10.94 30.45 

Link Element FP1 Effective 
Stiffness5  (kip/in) 

0 0 0 0 

Link Element FP2 Effective 
Stiffness5  (kip/in)  

2.0 5.57 2.0 5.57 

Link Element  FP1 Effective 
Radius (in) 

0 (flat) 0(flat)  0 (flat) 0 (flat) 

Link Element  FP2 Effective 
Radius (in) 

84.0 84.0 84.0 84.0 

Link Element FP1 and FP2 
Rate Parameter (sec/in) 

1.27 1.27 1.27 1.27 

Link Element FP1 and FP2 
Torsional Stiffness (kip-in/rad) 

0 0 0 0 

Link Element FP1 and FP2 
Rotational Stiffness (kip-in/rad)

0 0 0 0 

1 Value approximately 1/1000 of the supported mass. Other values can be used. 
2 Shear deformation location is at mid-height of element. 
3 Elements have same axial stiffness. Calculated for E=14500ksi, height 12inch, diameter 12inch and divided by 2. 

4 Calculated as W/2Reff 2-W/2Reff 1in order to account for the way SAP2000 calculates the elastic stiffness (specified 
elastic stiffness plus post-elastic stiffness).  
5 Effective stiffness specified as the post-elastic stiffness (W/2Reff 1) in order to minimize parasitic damping effects.
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In SAP2000, the global damping matrix is calculated on the basis of the isolator element 
specified effective stiffness and used in the dynamic analysis.  Accordingly, some viscous 
damping always “leaks” into the isolation system (see Sarlis et al, 2009), resulting in 
reduction of isolator displacement demand prediction.  The effect may be important and 
caution should always be exercised in damping specification.  In the analysis herein, the 
problem was reduced by specifying low damping ratio and by assigning small values for 
the effective isolator stiffness (herein specified as the post-elastic stiffness). 
 
TABLE 11-6 Response History Analysis Results for Lower Bound Properties of the 
Triple FP System in the Design Earthquake 

Earthquake 

Resultant 
Displacement 

(inch) 

Longitudinal 
Shear  
(kip) 

Transverse 
Shear 
(kip) 

Additional Axial 
Force 
(kip) 

Abut. Pier Abut. Pier Abut. Pier Abut. Pier 

01 NP 22.2 20.7 54.7 103.1 54.2 116.7 24.7 50.3 
02 NP 33.6 32.5 74.3 162.7 54.3 115.2 21.5 44.6 
03 NP 18.0 17.3 50.8 99.1 48.3 97.0 20.4 46.4 
04 NP 18.5 16.9 57.7 131.5 36.2 73.0 16.3 28.1 
05 NP 13.2 12.8 52.9 109.9 43.5 94.1 15.0 34.2 
06 NP 11.0 10.6 36.3 69.8 37.1 80.4 16.2 37.7 
07 NP 6.9 7.0 36.4 68.2 36.0 75.6 14.0 30.2 

Average 17.6 16.8 51.9 106.3 44.2 93.1 18.3 38.8 
 

01 PN 21.7 20.1 65.0 131.3 63.1 127.3 23.6 44.4 
02 PN 33.0 32.5 65.1 133.6 88.2 219.3 26.1 72.3 
03 PN 18.7 17.3 61.2 140.1 65.8 140.3 23.3 48.4 
04 PN 17.8 16.7 41.2 73.7 63.3 138.9 21.7 50.4 
05 PN 12.7 12.2 38.7 73.7 57.7 120.5 19.6 46.9 
06 PN 10.6 9.9 45.5 95.9 36.4 66.9 13.3 28.7 
07 PN 7.1 7.5 37.4 88.7 39.4 77.1 13.3 29.0 

Average 17.4 16.6 50.6 105.3 59.1 127.2 20.1 45.7 
The peak displacement response is the maximum out of all 4 abutment isolators and all 4 pier isolators. The 
forces given are the maximum for individual bearings at the abutment and pier locations.  

 
The results of the dynamic analysis are larger than those of the simplified analysis and, 
therefore, are used for the bearing safety check (see Appendix C).  The calculated isolator 
displacement demand in the DE is 17.6inch for the abutment bearings and 16.8inch for 
the pier bearings.  The abutment bearings are critical in terms of displacement capacity as 
they experience more seismic and service displacements.  The displacement capacity 
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should be 0.25 0.25 1.5
MCE DES E S ED         . That is, for the abutment 

bearings 0.25 3.0 1.5 17.6 27.2D x x inch   , thus just within the displacement 
capacity of the bearings prior to initiation of stiffening.   
 
TABLE 11-7 Response History Analysis Results for Upper Bound Properties of the 
Triple FP System in the Design Earthquake 

Earthquake 

Resultant 
Displacement 

(inch) 

Longitudinal 
Shear  
(kip) 

Transverse 
Shear 
(kip) 

Additional Axial 
Force 
(kip) 

Abut. Pier Abut. Pier Abut. Pier Abut. Pier 

01 NP 12.6 11.7 59.7 93.3 69.3 134.7 26.6 52.5 
02 NP 20.7 19.4 90.4 183.9 71.6 131.6 24.6 47.6 
03 NP 12.9 12.2 72.0 133.9 66.0 115.4 26.8 53.1 
04 NP 11.9 10.9 58.4 110.4 65.9 125.2 23.4 45.9 
05 NP 11.0 10.3 54.3 88.4 65.3 123.6 23.7 44.2 
06 NP 9.2 8.7 56.2 93.7 57.7 105.6 23.3 53.0 
07 NP 5.9 6.0 58.2 94.6 61.9 112.0 20.7 42.0 

Average 12.0 11.3 64.2 114.0 65.4 121.2 24.2 48.3 
 

01 PN 12.5 11.8 72.1 137.0 70.7 132.8 23.7 61.9 
02 PN 20.1 19.5 59.9 96.1 77.0 171.0 29.6 69.9 
03 PN 13.7 12.5 75.4 142.3 80.0 159.8 26.9 57.8 
04 PN 11.3 10.7 63.2 108.5 69.5 130.2 23.4 52.8 
05 PN 10.4 10.0 61.2 104.2 75.5 146.5 35.2 54.2 
06 PN 9.3 8.3 63.8 118.4 55.9 94.0 24.4 43.3 
07 PN 6.3 6.5 56.3 114.0 59.9 112.2 23.7 47.9 

Average 11.9 11.3 64.5 117.2 69.8 135.2 26.7 55.4 
The peak displacement response is the maximum out of all 4 abutment isolators and all 4 pier isolators. The 
forces given are the maximum for individual bearings at the abutment and pier locations.  

 
11.3.4 Summary 

Table 11-8 presents a comparison of important response parameters calculated by 
simplified analysis and by response history analysis.  Note that the base shear is the total 
force in the isolation system calculated on the basis of the calculated isolator 
displacements as follows: 
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1 12 2

pier pierabut abut
abut abut pier pier

eff eff

W W
W DW D

V
R R

     (11-3) 

In this equation Reff1=84inch, Wabut=4x336.5=1346kip (weight on abutment bearings), 

Wpier=4x936.5=3746kip (weight on pier bearings), abut=0.090 for lower bound and 0.149 
for upper bound (force at zero displacement divided by weight-see Appendix C, page C-

7) and pier=0.056 for lower bound and 0.094 for upper bound (force at zero displacement 
divided by weight-see Appendix C, page C-7).  The shear is normalized by the weight 
W=5092kip.   Note that the base shear is not a quantity that is directly used in design.  
Rather, the forces in the transverse and longitudinal direction at the abutment and pier 
locations, as reported in Tables 11-6 and 11-7, are useful.  The base shear is used herein 
to indicate the level of isolation achieved.   

TABLE 11-8  Calculated Response using Simplified and Response History Analysis 

Parameter 
Upper 
Bound 

Analysis 

Lower 
Bound 

Analysis 

Simplified Analysis Abutment Displacement in DE 
 abutD (in)1 10.2 11.7 

Simplified Analysis Pier Displacement in DE  

pierD (in)1 10.2 11.7 

Simplified Analysis Base Shear/Weight1 0.171 0.133 

Response History Analysis Abutment Displacement in DE 

abutD (in)2 12.0 17.6 

Response History Analysis Pier Displacement in DE 
 pierD (in)2 11.3 16.8 

Response History Analysis Base Shear/Weight2 0.177 0.166 
1 Simplified analysis based on Appendix C.  Value does not include increase for bi-directional excitation. 
2 Response history analysis based on results of Tables 11-6 and 11-7, and use of equation (11-3). 
   Weight=5092kip 

 

The response history analysis predicts larger isolator displacements than the simplified 
method.  As discussed in Appendix C, this was expected given that the scaling factors for 
the motions used in the dynamic analysis were substantially larger than the factors based 
on minimum acceptance criteria (see Section 10.4).  Good agreement between the results 
of simplified and response history analysis have been observed only when the minimum 
acceptance criteria for scaling are used (Ozdemir and Constantinou, 2010). 
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SECTION 12 
DESIGN AND ANALYSIS OF LEAD-RUBBER ISOLATION SYSTEM FOR 

EXAMPLE BRIDGE 

12.1 Single Mode Analysis 
 
Criteria for applicability of single mode analysis are presented in Table 3-4. Appendix D 
presents the calculations for the analysis and safety check of the isolation system. 
Identical bearings are selected for the pier and abutment locations despite the large 
difference in the loads at the two locations.  This is done for simplicity and economy.  If 
other criteria for design were considered, such as minimizing the transfer of shear at the 
abutment locations, a combined elastomeric (without lead core) and lead rubber bearing 
system could have been used.  In such a system, lead rubber bearings are placed at the 
piers and elastomeric bearings without lead core are placed at the abutment locations. 
 
Drawings of the bearings are shown in Figure 12-1.  
 
 

 
FIGURE 12-1 Lead-Rubber Bearing for Bridge Example  
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The pier bearings can safely accommodate approximately 24inch displacement (see 
Appendix D), which should be sufficient for the calculated seismic MCE displacement of 
20inch plus a portion of the service displacement (0.25inch) plus over 3inch of other 
displacements (such as post-tensioning and shrinkage). 
 
Table 12-1 presents a summary of the calculated displacement and force demands, the 
effective properties of the isolated structure and the effective properties of each bearing. 
These properties are useful in response spectrum, multi-mode analysis. The effective 
stiffness was calculated using 

 d
eff d

D

Q
K K

D
        (12-1) 

 
TABLE 12-1  Calculated Response using Simplified Analysis and Effective 
Properties of Lead-Rubber Isolators 

Parameter 
Upper Bound 

Analysis 
Lower Bound 

Analysis 

 Displacement in DE DD (in)1 5.8 9.1 

Base Shear/Weight1 0.309 0.206 

Pier Bearing Seismic Axial Force in DE (kip)2 250 (600) 250 (600) 

Pier Bearing Seismic Axial Force in MCE (kip)3 375 (900) 375 (900) 

Effective Stiffness of Each Abutment Bearing in DE 

effK  (k/in) 34.32 13.32 

Effective Stiffness of Each Pier Bearing in DE effK  

(k/in) 
34.32 15.26 

Effective Damping in DE 0.300 0.270 

Damping Parameter B in DE 1.711 1.659 

Effective Period in DE effT  (sec) 

(Substructure Flexibility Neglected) 
1.39 2.13 

Effective Period in DE effT  (sec) 

(Substructure Flexibility Considered) 
1.52 NA 

1    Based on analysis in Appendix D for the DE. 
2   Value is for 30% vertical+100% lateral combination (worst case for elastomeric bearing safety check), calculated 
for the  
      DE and rounded up. 
3   Same as for DE, multiplied by factor 1.5 and rounded up. 
    Abutment bearings not considered as load is less and not critical. 
    Value in parenthesis is seismic axial load for 100%vertical+30%lateral combination of actions 

 
Values of parameters in equation (12-1) are (see Appendix D for calculations): (a) for 
each abutment bearing, dK =7.52k/in and dQ =52.8kip for lower bound and 

dK =10.65k/in and dQ =137.3kip for upper bound, and (b) for each pier bearing, 
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dK =7.52k/in and dQ =70.4kip for lower bound and dK =10.65k/in and dQ =137.3 kip for 
upper bound. 
 
Note that the axial load calculated for the critical pier bearings is for the 
100%lateral+30%vertical combination of load actions.  That is, the bearing adequacy is 
assessed at maximum lateral displacement.  Accordingly, the vertical load is calculated 
for 30% of the vertical earthquake.  Note that in the case of the Triple FP bearing, the 
bearing adequacy was assessed for the vertical load based on 100% vertical earthquake at 
the maximum displacement.  That was conservative.  
 
12.2 Multimode Response Spectrum Analysis 
 
Multimode response spectrum analysis was not performed. However, the procedure is 
outlined in terms of the linear properties used for each isolator and response spectrum 
used in the analysis.  For the analysis, each isolator is modeled as a vertical 3-
dimensional beam element-rigidly connected at its two ends.  Each element has length h , 
area A , moment of inertia about both bending axes I  and torsional constant J .  
 
For response spectrum analysis, each isolator is modeled as a vertical 3-dimensional 
beam element (rigidly connected at its two ends) of length h , area A , moment of inertia 
about both bending axes I  and torsional constant J . The element length is the height of 
the bearing, h =15.7inch, and the area is calculated as described below in order to 
represent the vertical bearing stiffness. Note that the element is intentionally used with 
rigid connections at its two ends so that P  effects are properly distributed to the top and 
bottom parts of the bearing. 
 
The vertical bearing stiffness was calculated using the theory presented in Section 9 of 
the report. Particularly, the vertical stiffness in the laterally un-deformed configuration is 
given by  
 

 

1
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 

 (12-2) 

 
In equation (12-2), rT  is the total rubber thickness, rA  is the bonded rubber area 
(however adjusted for the effects of rubber cover by adding the rubber thickness to the 
rubber bonded diameter), K  is the bulk modulus of rubber (assumed to be 290ksi or 
2000MPa).  
 
Moreover, cE  is the compression modulus given by 
 
 26cE GS F  (12-3) 

 
In equation (12-3) G is the shear modulus of rubber, S is the shape factor and F=1 for 
lead-rubber bearings (see Constantinou et al, 2007a).  Note that for the calculation of the 
vertical stiffness of the lead-rubber bearing we consider that the lead core does not exist 
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and treat the bearing as one without a hole (for which parameter F=1). Also, we used the 
nominal value of shear modulus G under static conditions in order to obtain a minimum 
value of vertical stiffness that can also be used in the bearing performance specifications. 
Calculations are presented in Appendix D. 
 
Torsional constant is set J =0 or a number near zero since the bearing has insignificant 
torsional resistance. Moreover, shear deformations in the element are de-activated (for 
example, by specifying very large areas in shear). The moment of inertia of each element 
is calculated by use of use of the following equation 
 

 
3

12
effK h

I
E

  (12-4) 

 
in which effK

 
is the effective stiffness of the bearing calculated in the simplified analysis 

(see Table 12-1).  
 
Values of parameters h , A , I and E  used for each bearing type are presented in Table 
12-2.  

 
TABLE 12-2  Values of Parameters h , A , I and E  Used in Response Spectrum 
Analysis of Lead-Rubber Bearing Isolation System 

 
Bearing 
Location 

Parameter 
Upper Bound 

Analysis 
Lower Bound 

Analysis 

Abutment 

Effective Horizontal 
Stiffness effK (k/in) 

34.32 13.32 

Vertical Stiffness 

vK (k/in) 
15,000 15,000 

Height h (in) 15.7 15.7 
Modulus E (ksi) 14,500 14,500 

Area A (in2) 16.24 16.24 
Moment of Inertia I (in4) 0.76330 0.29625 

Pier 

Effective Horizontal 
Stiffness effK (k/in) 

34.32 15.26 

Vertical Stiffness 

vK (k/in) 
15,000 15,000 

Height h (in) 15.7 15.7 
Modulus E (ksi) 14,500 14,500 

Area A (in2) 16.24 16.24 
Moment of Inertia I (in4) 0.76330 0.33939 

 
Note that an arbitrary value is used for parameter E . Also, it should be noted that the 
model used to represent the elastomeric isolators properly represents the vertical and 
shear stiffness but not the bending stiffness of the bearings. The bending stiffness of the 
model of the bearings is given by /EI h  which for the pier bearing in the lower bound 
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analysis is equal to 313.4k-in/rad. The actual bending stiffness of the bearing is given 
by /r r rE I T , where rE is the rotational modulus ( / 3cE =88.4ksi), rI  is the bonded 
rubber area moment of inertia (=65410in4) and rT  is the rubber thickness (=7.18inch). 
For the pier bearing in the lower bound analysis, the bending stiffness is 805,326k-in/rad, 
which is several orders larger than the one of the model for response spectrum analysis. 
However, the effect on the response of the isolated bridge is insignificant. The only effect 
is on the shear strains due to rotation, which are conservatively calculated in the bearing 
safety assessment. 
Response spectrum analysis requires the use of the response spectrum of Figure 10-5 
(5%-damped spectrum) after division by parameter B for periods larger than or equal to 
0.8 effT , where effT is the effective period and B is the parameter that relates the 5%-

damped spectrum to the spectrum at the effective damping. Quantities effT , B and the 

effective damping are presented in Table 12-1. It should be noted that these quantities are 
given in Table 12-1 for the upper and lower bound cases, both of which must be 
analyzed. Values of 0.8 effT

 
are 1.1sec for upper bound analysis and 1.7sec for lower 

bound analysis. Values of spectral acceleration required for use in the analysis are 
presented in Table 12-3. 
 
12.3 Dynamic Response History Analysis 
 
12.3.1 Introduction 
 
Dynamic response history analysis was performed using the seven scaled motions 
described in Section 10.4 for the Design Earthquake (DE).  The scale factors utilized are 
the “Final Scale Factors” in Table 10-5.  Note that dynamic analysis was performed only 
for the DE, the results of which were utilized in design after multiplication by factor 1.5 
per requirements described in Section 3.4. 
 
12.3.2 Modeling for Dynamic Analysis and Ground Motion Histories 
 
The isolated bridge structure was modeled in program SAP2000 (CSI, 2002) using the 
bridge model described in Section 10 but with the isolators modeled as nonlinear 
elements.  Each lead-rubber bearing was modeled using a bilinear smooth hysteretic 
element with bi-directional interaction that extends vertically between two nodes at the 
location of the bearing.  The parameters describing the behavior are the characteristic 
strength dQ , the post-elastic stiffness dK  and the yield displacementY . Program SAP2000 
utilizes the alternate parameters of initial (or elastic) stiffness K , yield force (or yield) yF

 
and the ratio of post-elastic to initial stiffness (or ratio) r . The parameters are related as 
described below: 
 
 y d dF Q K Y   (12-5) 

 

 yF
K

Y
  (12-6) 
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 dK
r

K
  (12-7) 

 
TABLE 12-3 Spectral Acceleration Values for Use in Response Spectrum Analysis 
of Isolated Bridge with Lead-Rubber Bearing System 

Period T 
(sec) 

Spectral 
Acceleration for 

5%-Damping (g)1 

Spectral Acceleration 
for Upper Bound 

Analysis (g) 

Spectral Acceleration 
for Lower Bound 

Analysis (g) 
0.00 0.540 0.540 0.540 
0.10 1.006 1.006 1.006 
0.20 1.213 1.213 1.213 
0.30 1.179 1.179 1.179 
0.40 1.070 1.070 1.070 
0.50 0.992 0.992 0.992 
0.60 0.922 0.922 0.922 
0.70 0.871 0.871 0.871 
0.80 0.819 0.819 0.819 
0.90 0.767 0.767 0.767 
1.00 0.725 0.725 0.725 
1.10 0.666 0.666 0.666 
1.11 0.660 0.386 0.660 
1.20 0.606 0.354 0.606 
1.40 0.521 0.305 0.521 
1.60 0.457 0.267 0.457 
1.70 0.432 0.252 0.432 
1.71 0.430 0.251 0.259 
1.80 0.407 0.238 0.245 
1.90 0.386 0.226 0.233 
2.00 0.367 0.214 0.221 
2.20 0.328 0.192 0.198 
2.40 0.296 0.173 0.178 
2.60 0.269 0.157 0.162 
2.80 0.246 0.144 0.148 
3.00 0.227 0.133 0.137 
3.20 0.210 0.123 0.127 
3.40 0.195 0.114 0.118 
3.50 0.188 0.110 0.113 
3.60 0.182 0.106 0.110 
3.80 0.171 0.100 0.103 
4.00 0.160 0.094 0.096 
4.20 0.153 0.089 0.092 

1  Vertical excitation spectrum is 0.7 times the 5%-damped horizontal spectrum 
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Table 12-4 presents values of parameters for modeling the bearings in SAP2000.  It 
should be noted that an isolator height of 12inch was used in the dynamic response 
history analysis, whereas the actual height is 15.7inch.  This was used for simplicity so 
that the same input file is used for dynamic analysis as in the Triple FP system analysis.  
There is no effect on the results as the analysis did not account for P- effects.   
 
12.3.3 Analysis Results 
 
Tables 12-5 and 12-6 present the results of lower bound and upper bound response 
history analysis.  The analysis was performed with the program SAP2000, Version 
14.1.0, using the Fast Nonlinear Analysis (FNA) method with a large number of Ritz 
vectors (129) so that the results are basically exact. Analysis was performed with the 
fault-normal and fault-parallel components along the longitudinal and transverse 
directions, respectively and then the analysis was repeated with the components rotated.  
The results presented in the tables consist of the resultant isolator displacements and the 
longitudinal and transverse shear forces at the pier and abutment locations.  Results on 
isolator axial forces and internal forces in deck and substructure elements were calculated 
but not presented.  It should be noted that the analysis does not include effects of 
accidental torsion.  Also and in consistency with the model used for the example of 
Section 11, the global damping matrix was assembled by specifying modal damping to be 
2% of critical in each mode of vibration and by specifying the same effective stiffness for 
abutment and pier elements as specified in the Triple FP analysis of Section 11.  This 
ensures that the same Ritz vectors and the same global damping matrix are used in the 
two analysis models.    
 
TABLE 12-4  Parameters of Lead-Rubber Bearings used in Response History 
Analysis in Program SAP2000 

Parameter 
Upper Bound Analysis Lower Bound Analysis
Abutment Pier Abutment Pier 

Supported Weight (kip) 336.5 936.5 336.5 936.5 
Dynamic Mass (kip –sec2/in) 0.001 0.001 0.001 0.001 

Element Height (in) 12 12 12 12 
Shear Deformation Location (in) 6 6 6 6 

Vertical Stiffness vK (kip/in) 15,000 15,000 15,000 15,000 
Characteristic Strength dQ  (kip) 137.3 137.3 52.8 70.4 
Post-elastic Stiffness dK (kip/in) 10.65 10.65 7.52 7.52 

Effective Stiffness (kip/in) 2.00 5.57 2.00 5.57 
Yield Displacement Y (in) 1.00 1.00 1.00 1.00 

Yield Force yF (kip) 147.95 147.95 60.32 77.92 
Elastic Stiffness K  (kip/in) 147.95 147.95 60.32 77.92 

Ratio r  0.071984 0.071984 0.124668 0.096509 
Rotational Stiffness (kip-in/rad) 800,000 800,000 800,000 800,000 
Torsional Stiffness (kip-in/rad) 0 0 0 0 

 
The results of dynamic analysis are larger than those of the simplified analysis and, 
therefore, are used for the bearing safety check (see Appendix D).  The calculated isolator 
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displacement demand in the DE is 13.1inch for the abutment bearings and 12.5inch for 
the pier bearings.  The pier bearings are critical as they are subjected to large axial load.  
The displacement capacity should be 0.25 0.25 1.5

MCE DES E S ED         . That is, 

for the pier bearings 0.25 1.0 1.5 12.5 19.0D x x inch   , thus comfortably within the 
capacity of the bearings which have been shown to be adequate in Appendix D for 
displacement of 20inch.   
 
12.3.4 Summary 

Table 12-7 presents a comparison of important response parameters calculated by 
simplified analysis and by response history analysis.  Note that the base shear is the total 
force in the isolation system calculated on the basis of the calculated isolator 
displacements as follows: 

  
8

1
ii i Dd d

i

Q K DV


  (12-8) 

In this equation the subscript “i” denotes a bearing characterized by strength 
idQ
 
and 

post-elastic stiffness
idK .  Values of these quantities are given in Table 12-4.  Also, DD is 

the resultant isolator displacement calculated in the dynamic analysis (from Tables 12-5 
and 12-6).  The shear is normalized by the weight W=5092kip.   Note that the base shear 
is not a quantity that is directly used in design.  Rather, the forces in the transverse and 
longitudinal direction at the abutment and pier locations, as reported in Tables 12-5 and 
12-6 are useful.  The base shear is used herein to indicate the level of isolation achieved.   

The response history analysis predicts larger isolator displacements than the simplified 
method.  As discussed in Appendix D, this was expected given that the scaling factors for 
the motions used in the dynamic analysis were substantially larger than the factors based 
on minimum acceptance criteria (see Section 10.4).  Good agreement between the results 
of simplified and response history analysis have been observed only when the minimum 
acceptance criteria for scaling are used (Ozdemir and Constantinou, 2010). 

Note the designed bearing has substantial margin of safety (see details of adequacy 
assessment in Appendix D).  The bonded diameter of the bearing could be reduced to 
32inch from 34inch and the number of rubber layers could be reduced to 23 from 26 and 
the bearing would still be acceptable.  However, as designed, the bearing can 
accommodate additional service displacement such as due to shrinkage and post-
tensioning which were not considered in the bearing design.  If the size is reduced, the 
bearings need to be either installed pre-deformed or be re-positioned in service for 
accommodating these displacements.  Both procedures are complex for elastomeric 
bearings so that we prefer a design capable of accommodating larger displacements. 
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TABLE 12-5 Response History Analysis Results for Lower Bound Properties of the 
Lead-Rubber System in the Design Earthquake 

Earthquake 

Resultant 
Displacement 

(inch) 

Longitudinal 
Shear  
(kip) 

Transverse 
Shear 
(kip) 

Additional Axial 
Force 
(kip) 

Abut. Pier Abut. Pier Abut. Pier Abut. Pier 

01 NP 13.9 13.8 112.0 116.0 141.7 160.4 60.9 65.9 
02 NP 21.6 20.6 196.1 196.7 96.9 111.2 44.9 36.6 
03 NP 12.5 11.8 131.5 142.5 135.2 151.1 62.3 67.9 
04 NP 14.5 13.2 150.6 158.8 98.2 112.6 54.0 64.4 
05 NP 10.5 10.2 131.4 141.0 117.4 133.7 57.0 67.2 
06 NP 11.0 10.5 80.5 96.1 123.2 136.1 57.2 61.3 
07 NP 7.5 7.5 91.8 103.1 85.2 109.4 40.5 46.2 

Average 13.1 12.5 127.7 136.3 114.0 130.6 53.8 58.5 
 

01 PN 14.4 13.5 145.0 143.1 109.3 124.5 55.6 67.1 
02 PN 21.1 20.8 103.3 114.8 189.4 197.7 77.2 79.4 
03 PN 12.3 11.7 137.0 145.7 130.2 147.7 60.9 67.2 
04 PN 13.9 13.2 100.4 110.6 144.0 157.4 66.9 74.7 
05 PN 10.2 10.0 120.8 129.2 127.8 143.4 59.1 64.3 
06 PN 11.0 10.3 123.7 134.5 80.2 101.3 41.9 46.0 
07 PN 7.9 7.8 88.6 106.8 91.4 107.4 46.3 51.4 

Average 13.0 12.5 117.0 126.4 124.6 139.9 58.3 64.3 
The peak displacement response is the maximum out of all 4 abutment isolators and all 4 pier isolators. The 
forces given are the maximum for individual bearings at the abutment and pier locations.  
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TABLE 12-6 Response History Analysis Results for Upper Bound Properties of the 
Lead-Rubber System in the Design Earthquake 

Earthquake 

Resultant 
Displacement 

(inch) 

Longitudinal 
Shear  
(kip) 

Transverse 
Shear 
(kip) 

Additional Axial 
Force 
(kip) 

Abut. Pier Abut. Pier Abut. Pier Abut. Pier 

01 NP 8.3 8.3 197.6 186.3 170.3 178.9 74.0 76.7 
02 NP 8.8 7.4 228.5 210.6 160.6 163.2 71.0 72.4 
03 NP 9.4 7.8 233.2 215.9 186.0 179.2 88.2 95.5 
04 NP 7.2 6.2 201.2 185.4 201.1 191.4 90.5 94.6 
05 NP 10.0 10.1 201.0 185.9 224.4 224.2 88.7 87.7 
06 NP 6.1 5.6 160.9 154.0 200.7 194.7 84.9 88.2 
07 NP 8.1 8.0 174.0 165.3 215.0 213.0 92.3 96.8 

Average 8.3 7.6 199.5 186.2 194.0 192.1 84.2 87.4 
 

01 PN 8.8 8.6 173.4 181.1 192.3 197.6 82.3 84.3 
02 PN 8.5 8.1 177.6 140.2 223.2 216.5 93.1 93.3 
03 PN 8.9 8.1 183.6 173.0 227.7 222.1 99.0 102.1 
04 PN 8.3 6.6 216.9 193.7 194.1 187.0 81.5 82.0 
05 PN 10.7 9.8 239.5 220.3 194.4 190.3 82.3 81.8 
06 PN 7.1 5.8 209.6 194.9 154.3 161.7 70.2 79.5 
07 PN 8.8 7.8 223.6 209.2 175.3 174.5 78.4 87.0 

Average 8.7 7.8 203.5 187.5 194.5 192.8 83.8 87.1 
The peak displacement response is the maximum out of all 4 abutment isolators and all 4 pier isolators. The 
forces given are the maximum for individual bearings at the abutment and pier locations.  
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TABLE 12-7 Calculated Response using Simplified and Response History Analysis 

Parameter 
Upper 
Bound 

Analysis 

Lower 
Bound 

Analysis 

Simplified  Analysis Abutment Displacement in DE 
 abutD (in)1 5.8 9.1 

Simplified  Analysis Pier Displacement in DE  

pierD (in)1 5.8 9.1 

Simplified Analysis Base Shear/Weight1 0.309 0.206 

Response History Analysis Abutment Displacement in DE 

abutD (in)2 8.7 13.1 

Response History Analysis Pier Displacement in DE 
 pierD (in)2 7.8 12.5 

Response History Analysis Base Shear/Weight2 0.354 0.248 
1 Simplified analysis based on Appendix D.  Note there is a small difference in the normalized shear in 

Appendix D and as calculated by equation 12-7 using the displacements of Appendix D.  It is due to 
rounding of numbers.  Displacement value does not include increase for bi-directional excitation. 

2 Response history analysis based on results of Tables 12-6 and 12-7, and use of equation (12-8). 
   Weight=5092kip 
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SECTION 13 
DESIGN AND ANALYSIS OF SINGLE FRICTION PENDULUM ISOLATION 

SYSTEM FOR EXAMPLE BRIDGE 

 
13.1 Single Mode Analysis 
 
Criteria for applicability of single mode analysis are presented in Table 3-4. Appendix E 
presents the calculations for the analysis and safety check of the isolation system.  The 
selected bearing is a Single Friction Pendulum with the geometry shown in Figure 13-1.  
The height of the bearing is 9inch. The displacement capacity of the bearing is 
27.7inches, which is sufficient to accommodate the displacement in the maximum 
earthquake plus portion of the displacement due to service loadings. The bearings should 
be installed pre-deformed in order to accommodate displacements due to post-tensioning 
and shrinkage.  
 

 
 
 
FIGURE 13-1  Single Friction Pendulum Bearing for Bridge Example 
 
Note that all criteria for applicability of the single mode method of analysis are met. 
Specifically, the effective period in the Design Earthquake (DE) is equal to or less than 
2.90sec (limit is 3.0sec), the system meets the criteria for re-centering and the isolation 
system does not limit the displacement to less than the calculated demand.   Nevertheless, 
dynamic response history analysis should be used to design the isolated structure but 
subject to limits based on the results of the single mode analysis. 
 
Table 13-1 presents a summary of the calculated displacement and force demands, the 
effective properties of the isolated structure and the effective properties of each type of 
bearing. These properties are useful in response spectrum, multi-mode analysis. The 
effective stiffness was calculated using: 

 eff
e D

W W
K

R D
   (13-1) 
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TABLE 13-1  Calculated Response using Simplified Analysis and Effective 
Properties of Single FP Isolators 

Parameter 
Upper 
Bound 

Analysis 

Lower 
Bound 

Analysis 

 Displacement in DE DD (in)1 9.7 11.4 

Base Shear/Weight1 0.176 0.138 

Pier Bearing Seismic Axial Force in MCE (kip)2 860.0 860.0 

Effective Stiffness of Each Abutment Bearing in DE effK  

(k/in) 
7.31 4.76 

Effective Stiffness of Each Pier Bearing in DE effK  (k/in) 15.50 10.78 

Effective Damping in DE 0.300 0.300 

Damping Parameter B in DE 1.711 1.711 

Effective Period in DE effT  (sec) 

(Substructure Flexibility Neglected) 

 
2.37 

 
2.90 

Effective Period in DE effT  (sec) 

(Substructure Flexibility Considered) 

 
2.55 

 
NA 

1 Based on analysis in Appendix E for the DE. 
2 Value is for 100% vertical+30% lateral combination of load actions (worst case for FP bearing safety 

check), calculated for the DE, multiplied by factor 1.5 and rounded up.  Abutment bearings not 
considered as load is less and not critical.

 
In equation (13-1), 160eR inch (see Appendix E) and (a) W is equal to 336.5kip for 

each abutment bearing, and friction coefficient   is equal to 0.090 for lower bound and 
0.150 for upper bound of the abutment bearings, and (b) W is equal to 936.5kip for each 
pier bearing and friction coefficient   is equal to 0.060 for lower bound and 0.100 for 
upper bound of the pier bearings. 
 
13.2 Multimode Response Spectrum Analysis 
 
Multimode response spectrum analysis was not performed. However, the procedure is 
outlined in terms of the linear properties used for each isolator and response spectrum 
used in the analysis.  For the analysis, each isolator is modeled as a vertical 3-
dimensional beam element-rigidly connected at the top and pin connected at the bottom.  
These details are valid for the bearing placed with the concave sliding surface facing 
down so that the entire P- moment is transferred to the top (the location of the pin and 
rigid ends must be reversed when the bearing is placed with the sliding surface facing 
up).  Each element has length h , area A , moment of inertia about both bending axes I  
and torsional constant J . The element length is the height of the bearing, 9inchh  , and 
its area is the area that carries the vertical load which is a circle of 16inch diameter.  
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To properly represent the axial stiffness of the bearing, the modulus of elasticity is 
specified to be related but less than the modulus of steel, so E=14,500ksi. (The bearing is 
not exactly a solid piece of metal so that the modulus is reduced to half to approximate 
the actual situation). Torsional constant is set J =0 or a number near zero since the 
bearing has insignificant torsional resistance. Moreover, shear deformations in the 
element are de-activated (for example, by specifying very large areas in shear). The 
moment of inertia of each element is calculated by use of the following equation 
 

 
3

3
effK h

I
E

  (13-2) 

 
where effK

 
is the effective stiffness of the bearing calculated in the simplified analysis 

(see Table 13-1). Values of parameters h , A , I and E  used for each bearing type are 
presented in Table 13-2. 
 
TABLE 13-2 Values of Parameters h , A , I and E for Each Bearing in Response 
Spectrum Analysis of Single FP System 

Bearing 
Location 

Parameter 
Upper Bound 

Analysis 
Lower Bound 

Analysis 

Abutment 

Effective Horizontal 
Stiffness effK (k/in) 

7.31 4.76 

Height h (in) 9.0 9.0 
Modulus E (ksi) 14,500 14,500 

Area A (in2) 201.1 201.1 
Moment of Inertia I (in4) 0.12251 0.07977 

Pier 

Effective Horizontal 
Stiffness effK (k/in) 

15.50 10.78 

Height h (in) 9.0 9.0 
Modulus E (ksi) 14,500 14,500 

Area A (in2) 201.1 201.1 
Moment of Inertia 

I (in4) 
0.25976 0.18066 

 
Response spectrum analysis requires the use of the response spectrum of Figure 10-5 
(5%-damped spectrum) after division by parameter B for periods larger than or equal to 
0.8 effT , where effT

 
is the effective period and B is the parameter that relates the 5%-

damped spectrum to the spectrum at the effective damping. Quantities effT , B and the 

effective damping are presented in Table 13-1. It should be noted that these quantities are 
given in Table 13-1 for the upper and lower bound cases, both of which must be 
analyzed. Values of 0.8 effT

 
are 1.9sec for upper bound analysis and 2.3sec for lower 

bound analysis. Values of spectral acceleration required for use in the analysis are 
presented in Table 13-3. 

 



218 
 

 
TABLE 13-3 Spectral Acceleration Values for Use in Response Spectrum Analysis 
of Isolated Bridge with Single FP System 

Period T 
(sec) 

Spectral 
Acceleration for 

5%-Damping (g)1 

Spectral Acceleration 
for Upper Bound 

Analysis (g) 

Spectral Acceleration 
for Lower Bound 

Analysis (g) 
0.00 0.540 0.540 0.540 
0.10 1.006 1.006 1.006 
0.20 1.213 1.213 1.213 
0.30 1.179 1.179 1.179 
0.40 1.070 1.070 1.070 
0.50 0.992 0.992 0.992 
0.60 0.922 0.922 0.922 
0.70 0.871 0.871 0.871 
0.80 0.819 0.819 0.819 
0.90 0.767 0.767 0.767 
1.00 0.725 0.725 0.725 
1.20 0.606 0.606 0.606 
1.40 0.521 0.521 0.521 
1.60 0.457 0.457 0.457 
1.80 0.407 0.407 0.407 
1.89 0.388 0.388 0.388 
1.90 0.386 0.226 0.386 
2.00 0.367 0.214 0.367 
2.20 0.328 0.192 0.328 
2.29 0.314 0.183 0.314 
2.30 0.312 0.182 0.182 
2.40 0.296 0.173 0.173 
2.60 0.269 0.157 0.157 
2.80 0.246 0.144 0.144 
3.00 0.227 0.133 0.133 
3.20 0.210 0.123 0.123 
3.40 0.195 0.114 0.114 
3.50 0.188 0.110 0.110 
3.60 0.182 0.106 0.106 
3.80 0.171 0.100 0.100 
4.00 0.160 0.094 0.094 
4.20 0.153 0.089 0.089 
4.40 0.147 0.086 0.086 
4.60 0.140 0.082 0.082 
4.80 0.135 0.079 0.079 
5.00 0.130 0.076 0.076 

1  Vertical excitation spectrum is 0.7 times the 5%-damped horizontal spectrum 
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13.3 Dynamic Response History Analysis 
 
13.3.1 Introduction 
 
Dynamic response history analysis was not performed but some information on the 
modeling of the isolation system for response history analysis in program SAP2000 is 
provided.  Note that the single FP system has a behavior which is essentially the same as 
that of the Triple FP system analyzed in Section 11 (except for the behavior after 
stiffening, which is not utilized in either system nor is modeled in the dynamic analysis).  
Accordingly, the results of the dynamic analysis of Section 11 have been used in the 
design of the isolation system (see Appendix E).   
 
13.3.2 Modeling for Dynamic Analysis 
 
The isolated bridge structure may be modeled in the program SAP2000 (CSI, 2002) using 
the bridge model described in Section 10 but with the isolators modeled as nonlinear 
elements.  In this model, each bearing is represented by a Friction Pendulum element in 
SAP2000 that extends vertically between two nodes at the location of the bearing.  The 
distance between the nodes is the height of the bearing (in the multimode analysis, the 
same two nodes formed the ends of a vertical beam element representing the isolator) and 
with specified shear deformation at mid-height. Each element has the following degrees 
of freedom (DOF): 
 

a) Axial DOF, designated as U1.  This DOF is linear and the elastic vertical stiffness 
must be specified.  For the FP bearing, the elastic vertical stiffness should be 
estimated as that of a column having the height of the bearing, diameter of the 
inner slider and modulus of elasticity equal to one half the modulus of elasticity of 
steel in order to account for the some limited flexibility in the bearing, which is 
not a solid piece of metal.  
 

b) Shear DOF in the two orthogonal directions, designated as U2 and U3.  For elastic 
analysis, the stiffness associated with these two DOF should be specified to be the 
effective isolator stiffness calculated in the single mode analysis.  For nonlinear 
analysis, the radius, supported weight, frictional parameters FRICTION FAST, 
FRICTION SLOW and RATE, and elastic stiffness need to be specified.  More 
details are provided below. 
 

c) Torsional DOF, designated as R1.  The torsional stiffness (elastic DOF) for FP 
isolators is very small and specification of zero value is appropriate. 
 

d) Rotational DOF, designated as R2 and R3.  The rotational stiffness (elastic DOF) 
is very small and should be specified as zero so that the structural elements above 
and below the element are allowed to rotate as needed. 
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Table 13-4 presents the values of the parameters of each bearing for use in the SAP2000 
model.  
 
TABLE 13-4 Parameters of Single FP Bearings for Response History Analysis  

Parameter 
Upper Bound Analysis Lower Bound Analysis 
Abutment Pier Abutment Pier 

Supported Weight (W) (kip) 336.5 936.5 336.5 936.5 
Dynamic Mass1 (kip-s2/in) 0.001 0.002 0.001 0.002 
Link Element Height2 (in) 9.0 9.0 9.0 9.0 

Link Element Vertical 
Stiffness3 (kip/in) 

324,000 324,000 324,000 324,000 

Link Element Friction Fast 
(fmax) 

0.150 0.100 0.090 0.060 

Link Element Friction Slow 
(fmin) 

0.075 0.050 0.045 0.030 

Link Element Radius (inch)  160.0 160.0 160.0 160.0 
Link Element Elastic Stiffness4  

(kip/in) 
630.9 1170.6 378.6 702.4 

Link Element Effective 
Stiffness5  (kip/in) 

2.103 5.853 2.103 5.853 

Link Element Rate Parameter 
(sec/in) 

2.54 2.54 2.54 2.54 

Link Element Torsional 
Stiffness (kip-in/rad) 

0 0 0 0 

Link Element Rotational 
Stiffness (kip-in/rad) 

0 0 0 0 

0 Value approximately 1/1000 of the supported mass. Other values can be used. 
1 Shear deformation location is at mid-height of element. 
2 Vertical stiffness calculated for E=14500ksi, height 9inch and diameter 16inch. 
3 Elastic stiffness calculated as fminW/Y, where Y=0.04inch. 
4 Effective stiffness calculated as the post-elastic stiffness (W/Re) in order to minimize parasitic damping effects. 
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SECTION 14 
SUMMARY AND CONCLUSIONS 

 

This report presented detailed analysis and design specifications for bridge bearings, 
seismic isolators and related hardware that are based on the LRFD framework, are based 
on similar fundamental principles, and are applicable through the same procedures 
regardless of whether the application is for seismic-isolated or conventional bridges.  The 
procedures are cast in a form that allows the user to understand the margin of safety 
inherent in the design.  Moreover, the report presents the background theory on which the 
analysis and design procedures are based.   
 
The report also presents a number of detailed analysis and design examples.  The 
examples include several cases of design of bridge elastomeric bearings, a case of design 
of a multidirectional spherical sliding bearing, and three cases of analysis and design of 
an isolation system for an example bridge.  The three cases are one for a triple FP  
isolation system, one  for a single FP isolation system and one for a lead-rubber isolation 
system. 
 
The presented procedures are limited to elastomeric bearings and to flat or spherically 
shaped sliding bearings.  In the case of elastomeric bearings, the design procedures cover 
adequacy of the elastomer in terms of strains, stability, and adequacy of shim plates and 
end plates.  In the case of sliding bearings, the design procedures cover adequacy of the 
end plates.  For the special case of flat multidirectional spherical sliding bearings, the 
design procedure is presented in sufficient detail to allow for complete design, including 
details of various internal components and anchorage. 
 
The design procedures utilize different acceptable limits for service, design earthquake 
and maximum earthquake conditions.  For service conditions, the design procedures 
parallel those of the latest AASHTO LRFD Bridge Specifications (AASHTO, 2010) 
except that equations are cast into simpler form.  The maximum earthquake effects are 
defined as those of the design earthquake multiplied by a factor.  Currently, this factor for 
California is specified as 1.5 for the effects on displacements in consistency with the 
approach followed in the 2010 AASHTO Guide Specifications for Seismic Isolation 
Design. The value of this factor is dependent on the site of the bridge and on the 
properties of the seismic isolation system so that a single value cannot be representative 
of all cases.  It is believed that the value of 1.5 for this factor is conservative for 
California.  Moreover, the corresponding factor for forces is not specified and is left to 
the Engineer to determine.  The examples presented in the appendices utilize a factor for 
the maximum earthquake force calculation equal to 1.5.  This value should be regarded as 
an upper bound on the likely values for this factor. 
 
While the presented procedures and examples for seismic isolators are currently 
applicable in California, they are easily adapted for use in other locations by utilizing the 
applicable definition for the design earthquake and the related factors to account for the 
effects of the maximum earthquake.  However, the presented procedures for elastomeric 
bridge bearings and for flat spherical sliding bridge bearings are highly specialized for 
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application in California.  Use of the procedures for these bearings in areas of lower 
seismicity will likely result in conservative designs.   
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APPENDIX A 
DEVELOPMENT AND VERIFICATION OF SIMPLIFIED EXPRESSIONS FOR SHEAR 
STRAIN IN RUBBER LAYERS FOR USE IS DESIGN OF ELASTOMERIC BEARINGS 

 
 
A-1 Introduction 
 
Elastomeric bearings are the combination of natural or synthetic rubber layers bonded to steel 
shims used as composite elements to accommodate lateral displacements under axial loads in 
structures.  The low shear modulus of the rubber and the bonding to steel shims, considered as 
rigid, allow the units to develop a low horizontal stiffness and high vertical stiffness respectively.   
Figure A-1 illustrates the construction of an elastomeric bearing. 
 
 

 
FIGURE A-1 Construction of an elastomeric bearing 
 
Elastomeric bearings represent a commonly used system for seismic isolation.  Also, elastomeric 
bearings are used as regular bridge bearings for accommodating bridge movements due to effects 
of temperature changes, traffic and creep and shrinkage of concrete.  Also, elastomeric bearings 
are used to provide vibration isolation from ground borne vibration in buildings.  In general, the 
construction of elastomeric bearings is similar regardless of the application.  However, depending 
on the application, the geometry and thickness of individual rubber layers differs.  These 
differences result in substantial differences in the distribution of strains in the rubber and in 
capacity of the bearings to sustain load under deformation. 
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In applications of seismic isolation, rubber bearing geometries typically consist of circular or 
circular with a central hole or square bearings with small individual rubber layer thickness.  In 
applications of expansion bearings in bridges, the geometry is typically rectangular with the long 
dimension placed perpendicular to the bridge axis (also direction of expansion or contraction) and 
with a large individual rubber layer thickness.  In vibration isolation applications rubber bearings 
are typically circular or square with large individual rubber layer thickness.  Moreover and 
depending on the application,   rubber of a range of material properties is used.  Accordingly, 
analysis of elastomeric bearings should consider (a) circular, circular hollow, rectangular and 
square plan geometries, (b) a range of individual rubber thicknesses (typically expressed by the 
shape factor) and (c) a range of material properties that include the shear modulus and the bulk 
modulus of rubber.   
 
Herein, a number of theoretical solutions derived on the basis of the “pressure solution” 
assumption are investigated for rectangular, square, circular and circular hollow bearings.  The 
“pressure solution” is based on a number of simplified assumptions that reduces the problem of 
derivation of expressions for the shear strains due to compression and rotation to one that has 
analytical solutions, although in forms that are too complex for practical purposes.  “Pressure 
solutions” developed by Stanton and Roeder (1982), Kartoum (1987),  Chalhoub and Kelly 
(1990) and Constantinou et al. (1992) were revisited and cast into forms that are useful for design 
purposes.  When too complex for design purposes, the solutions were reduced to simple forms 
with parameters that can be obtained from graphs and tables.  It is expected that these graphs or 
tables will be become part of design specifications for elastomeric bearings.   The accuracy of the 
solutions has been investigated by comparison of results obtained in finite element analysis of a 
range of geometries, loadings and material properties.   
 
The presentation that follows distinguishes between compression and rotation of elastomeric 
bearings.  In the analysis, a single elastomeric layer is considered to be bonded to rigid ends.  
This model represents an accurate depiction of the behavior of elastomeric bearings provided that 
the reinforcing shims are sufficiently stiff to undergo bending deformations.  This situation 
typically occurs in elastomeric bearings in which the reinforcing shims are made of steel with a 
minimum thickness of 1.5mm and designed by current design criteria.   This assumption should 
not be valid in general when the reinforcing shims are made of different materials and/or are 
lesser thickness.   
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A-2 Analysis of Compression 
 
A-2.1 Introduction 
 
The analysis of elastomeric bearings under compression is too complex to allow for simple 
solutions that are practical in design.   Even when linear elastic behavior and infinitesimal strains 
are assumed, only one exact solution is known and applies to cylindrical rubber bonded layers 
(Moghe and Neft, 1971).  The solution that is available only for the compression stiffness of the 
cylinder is in terms of an infinite series of Bessel functions-too complex for practical use. 
 
Herein, we concentrate on solutions for the maximum shear strain as a result of compression of 
single bonded layer of rubber.  Figure A-2 illustrates the geometries considered in this work. 
 

 
FIGURE A-2  Dimensions of Single Bonded Rubber Layer 
 
Under compression, a single bonded rubber layer undergoes the deformation field depicted in 
Figure A-3 and results in distributions of vertical stress and shear strain that are approximately 
shown in Figure A-3.  It is known that the maximum shear stain due to compression occurs very 
close to the free end on the bonded layer (for a hollow bonded layer it occurs very close to the 
inner free end) so that it is very difficult to calculate the value based on computational mechanics 
(Constantinou et al,  1992; 2007).   Solutions based on simplified assumptions, as utilized herein, 
predict the maximum shear strain to occur exactly at the free end as shown in Figure A-3.  While 
the location is incorrect, it is presumed that the value is slightly conservative. 
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FIGURE A-3  Behavior of a Bonded Rubber Layer under Compression 
 
The solutions evaluated herein are based on the “pressure solution” assumption.  The major 
advantage of these solutions is that (a) they provide solutions of good accuracy (as will be 
demonstrated herein) without undue computational complexity, (b) account for the 
compressibility of rubber, and (c) allow, under certain conditions for the derivation of simpler 
asymptotic expansion solutions that are practical use.  Other approximate solutions such as the 
one developed by Gent and Lindley (1959) are not considered as they do not correctly account 
for rubber compressibility. 

 
The “pressure solution” is based on the seminal work of Conversy (1967), which was later 
applied to a variety of geometries (Stanton and Roeder, 1982; Kartoum, 1987; Chalhoub and 
Kelly, 1990; Constantinou et al., 1992).   The basic assumptions of this theory are: 
 
a) All normal stresses are equal (to the pressure) at any point within the constrained layer (thus 

the solution is termed the “pressure solution” as it resembles hydrostatic pressure). 
b) Points lying on a vertical line (z direction) have a parabolic dependency on variable z. 
c) Horizontal plane sections remain horizontal after deformation. 
d) Shear stresses in the horizontal plane (xy plane) are zero (τxy = 0 where z is the vertical axis). 
e) All normal stresses are equal to zero on the free lateral surfaces. 

 
These assumptions lead to approximate solutions in terms of two basic parameters: 
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a) Material properties: Bulk modulus to shear modulus ratio, K/G. 
b) Geometric properties: shape factor S. 
 
Koh and Kelly (1989) investigated and confirmed the validity of the “pressure solution” in 
predicting the compression stiffness of square bonded layers by deriving a solution with all but 
assumptions b) and c) above relaxed.    Other investigators relied on finite element analysis to 
investigate the validity of the “pressure solution” (e.g., Constantinou et al, 1992; Konstantinidis 
et al, 2008).   This approach is also followed herein. 
 
The shape factors S is defined as the ratio of the loaded area to the area free to bulge.  For the 
geometries shown in Figure A-2, the shape factor is given by the following equations: 
 
 circular 

 

 S ൌ
D

4t
                                                                                                                                                     ሺA െ 1ሻ 

 
 circular hollow 

 

S ൌ
Do െ Di

4t
                                                                                                                                           ሺA െ 2ሻ 

 
 rectangular 

 

S ൌ
L

2ሺ1 ൅ L/Bሻt
                                                                                                                                 ሺA െ 3ሻ 

 
Analyses conducted for this work and presented considered the geometries of Figure A-2, shape 
factor S in the range of 5 to 30, and K/G ratio of 2000, 4000, 6000 and infinity (incompressible 
material).  Note that the bulk modulus of rubber is typically assumed to be K=2000MPa (290ksi), 
whereas rubber in applications of bridge bearings or seismic isolation have shear modulus G in 
the range of about 0.5 to 1MPa (75psi to 150psi).  Accordingly, typical values of ratio K/G are 
2000 to 4000.    

A-2.2   Circular Bonded Rubber Layer in Compression 
 
A pressure solution for circular elastomeric bearings subjected to compression by force P was 
presented by Chalhoub and Kelly (1990) in terms of Bessel functions.  The distribution of 
pressure (equal to all three normal stresses at every point in a bonded rubber layer) is given by: 
 

pሺrሻ ൌ Kεc ൤1 െ
I0ሺβr/Rሻ

I0ሺβሻ
൨                                                                                                                  ሺA െ 4ሻ 

 
In equation (A-4), I0 is the modified Bessel function of first kind and order zero, εc is the 
compressive strain and β is a dimensionless factor defined as: 
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εୡ  ൌ
P/A
Eୡ

                                                                                                                                                ሺA െ 5ሻ 

 

β ൌ Sඨ
48

K
Gൗ

                                                                                                                                          ሺA െ 6ሻ 

In the above equations, A is the bonded area of rubber, R is the radius of the bonded circular area, 
S is the shape factor, K is the rubber bulk modulus and G is the rubber shear modulus.  The 
compression modulus Ec is given by the following equation in terms of the modified Bessel 
functions of first kind (I0, I1): 
 

Ec ൌ K ൤1 െ
2I1ሺβሻ
βI0ሺβሻ

൨                                                                                                                         ሺA െ 7ሻ 

 
The shear stress in the plane defined by the vertical axis (axis of compression) and the radial 
direction and at the interface of rubber and steel shims is given by: 
 

γrz ൌ െ
t

2G
 
dp

dr
                                                                                                                                        ሺA െ 8ሻ 

 
In this equation, t is the rubber layer thickness.   Use of equations (A-4), (A-5), (A-7) and (A-8) 
results in the following expressions for the pressure and shear strains in terms of load P: 
 

pሺrሻ
P

Aൗ
ൌ

1 െ
I0ሺβr/Rሻ

I0ሺβሻ

1 െ
2I1ሺβሻ
βI0

ሺβሻ

                                                                                                                            ሺA െ 9ሻ 

                                                                                  
γrzGS
P

Aൗ
ൌ

β

4Ioሺβሻ
 

I1ሺβr/Rሻ

1 െ
2I1ሺβሻ
βI0

ሺβሻ

                                                                                                              ሺA െ 10ሻ 

 
The maximum value of the shear strain, γc, occurs for r=R, resulting in:   
 
γcGS
P

Aൗ
ൌ

12S2

ሺK
Gൗ ሻ

 
I1ሺβሻ

βI0
ሺβሻ െ 2I1ሺβሻ

                                                                                                     ሺA െ 11ሻ 

 
An asymptotic expansion of equation (A-11) valid for small values of parameter β (equivalently,  
large values of bulk modulus by comparison to the shear modulus) is: 
 
γcGS
P

Aൗ
ൌ 1 ൅

2S2

൫K
Gൗ ൯

                                                                                                                           ሺA െ 12ሻ 

 
Equation (A-12) indicates that the dimensionless quantity on the left side (normalized shear 
strain) is always larger than unity and depends on the value of the shape factor and the 
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compressibility of the material.  Note that current design specifications (e.g., 1999 AASHTO and 
its 2010 revision) use a value of unity regardless of the value of the shape factor.   Values of the 
normalized shear strain as calculated by equation (A-11) are tabulated in Table A-1 for values of 
shape factor in the range of 5 to 30 and four values of K/G ratio.   It may be observed in Table A-
1 that the normalized stain equals to or approximately equals to unity for incompressible material 
or for small shape factors.   However, there is substantial deviation from unity at large shape 
factors, which should be of significance in seismic isolation applications, where large shape 
factors are utilized. 
 

TABLE A-1  Normalized Maximum Shear Strain Values for Circular Bonded Rubber 
Layers 

 

CIRCULAR 

NORMALIZED SHEAR STRAIN    
ఊ೎ீௌ
௉

஺ൗ
 

S 
K/G 

2000 4000 6000 ∞ 

5 1.02 1.01 1.01 1.00 

7.5 1.05 1.03 1.02 1.00 

10 1.10 1.05 1.03 1.00 

12.5 1.15 1.08 1.05 1.00 

15 1.20 1.11 1.07 1.00 

17.5 1.27 1.14 1.10 1.00 

20 1.34 1.18 1.13 1.00 

22.5 1.41 1.23 1.16 1.00 

25 1.49 1.27 1.19 1.00 

27.5 1.57 1.32 1.23 1.00 

30 1.66 1.37 1.26 1.00 
 
Figure A-4 presents graphs of the normalized maximum shear strain as calculated by equation 
(A-11) (solid lines-presumed exact) and by equation (A-12) (dashed lines-approximate).   The 
approximate simple equation (A-12) provides slightly conservative predictions.   
 
Figure A-4 also includes results obtained in finite analysis that is described in Section A-2.3.  
Results obtained for values of K/G equal to 4000 or for incompressible material, and for shape 
factor values S=5, 20 and 30 are in excellent agreement with the theoretical solution. 
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FIGURE A-4  Normalized Maximum Shear Strain Values for Circular Pads  
 

A-2.3 Finite Element Analysis of Circular Bonded Rubber Layers in Compression 
 
Finite element analysis (FEA) was utilized to verify that the theoretical results based on the 
“pressure solution” are valid and accurate.   The compression of circular bonded rubber layers is 
an axi-symmetric problem that is easily modeled for finite element analysis.  The FEA model 
used isotropic axi-symmetric elements with quadratic displacement field and was implemented in 
ABAQUS.  Due to symmetry only half of the bonded rubber layer was analyzed.   
 
The finite element mesh used is shown in Figure A-5 and a typical result on the distribution of 
shear strains is shown in Figure A-6 (shows portion of mesh close to the free surface).  The mesh 
had increasing refinement towards the free edge in order to correctly capture, if possible, the 
expected large variation of the shear strain very close to the free boundary.  The boundary 
conditions implemented in the FEA model were: 
 Zero displacements in the X and Y directions at the Y=0 surface. 
 Zero displacement in the X direction and uniform downward displacement at Y=t. 
 Zero displacement in the X direction at the axis of symmetry (X = 0). 
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FIGURE A-5  Finite Element Mesh used in Rubber Layer Compression Analysis 
 
 

 
FIGURE A-6  Contour Plot of Shear Strain in Circular Bonded Layer 
 
 
For analysis, the thickness of the single rubber layer was selected arbitrarily to be t=10mm, the 
imposed vertical displacement was selected to be 1mm and analysis without geometric 
nonlinearities was conducted.  Dimension R was varied so that the shape factor S had values of 5, 
20 or 30.  Isotropic material properties were selected so that the ratio K/G was either infinity 
(incompressible material) or 4000.  
 
Selected results on the calculated distributions of normal stresses and shear strains for the case 
K/G=4000 and S=5, 20 and 30 are presented in Figures A-7 to A-12.  Evidently, the theoretical 
“pressure solution” provides results of very good accuracy.  Note that the expected sharp 
variation of shear strain near the free boundary is captured in the FEA and that the peak value of 
the strain is either accurately calculated by the theoretical solution or is slightly overestimated in 
cases of small shape factors. 
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FIGURE A-7  Normal Stress Distribution in the Radial Direction for S=30 
 

 
FIGURE A-8  Shear Strain Distribution in the Radial Direction for S=30 
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FIGURE A-9 Normal Stress Distribution in the Radial Direction for S=20 
 

 
FIGURE A-10  Shear Strain Distribution in the Radial Direction for S=20 
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FIGURE A-11  Normal Stress Distribution in the Radial Direction for S=5 
 

 
FIGURE A-12  Shear Strain Distribution in the Radial Direction for S=5 
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A-2.4 Circular Hollow Bonded Rubber Layer in Compression 
 
A pressure solution for circular hollow elastomeric bearings (external diameter Do and internal 
diameter Di) subjected to compression by force P was presented by Constantinou et al (1992) in 
terms of Bessel functions.  Note that the solution applies to hollow bearings for which rubber is 
allowed to freely bulge at the inner surface.  Accordingly, the solution does not apply to lead-
rubber bearings for which the central hole is plugged with lead and rubber is not allowed to 
bulge.   
 
The distribution of pressure (equal to all three normal stresses at every point in a bonded rubber 
layer) is given by: 
 
pሺrሻ ൌ B1I0ሺαrሻ ൅ B2K0ሺαrሻ ൅ Kεc                                                                                               ሺA െ 13ሻ 
 

B1 ൌ
KεcሾK0൫βo൯ െ K0൫βi൯ሿ

d
                                                                                                            ሺA െ 14ሻ 

 

B2 ൌ
KεcሾI0൫βi൯ െ I0൫βo൯ሿ

d
                                                                                                               ሺܣ െ 15ሻ 
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4t
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Di

4t
                                                                                                                           ሺA െ 18ሻ 

 

α ൌ ඨ
12G

Kt2
                                                                                                                                             ሺA െ 19ሻ 

 
In the above equations, K0 and K1 are the modified Bessel function of second kind, order zero and 
order one, respectively, K is the bulk modulus of rubber, G is the shear modulus of rubber, t is 
the rubber layer thickness, εc is the compressive strain given by equation (A-5) and Ec is the 
compression modulus given by: 
 

Ec ൌ K
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Equations (A-13) to (A-20) and (A-8) are utilized to arrive at the following equations in terms of 
the load P: 
 
pሺrሻ
P

Aൗ
ൌ
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Equation (A-23) is used to calculate the peak value of shear strain γcinner that occurs at the inner 
surface where r = Di/2: 
 

γcGS
P
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In the case of incompressible material (K/G=∞), Constantinou et al. (1992) reported that the 
maximum shear strain at the inner surface is given by: 
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Equation (A-25) predicts a value for the dimensionless shear strain much larger than unity.  This 
demonstrates the significant effect that the central hole has on the maximum shear strain. 
 
The value of the shear strain at the outer surface is smaller than that at the inner surface but 
important as it is additive to the maximum shear strain due to bearing rotation that occurs at the 
outer surface.  Equation (A-23) is used to calculate γcouter by using r = Do/2: 
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Values of the normalized shear strain as calculated by equations (A-24) and (A-28) are tabulated 
in Tables A-2 and A-3, respectively for the inner and outer surfaces.   Values of shape factor in 
the range of 5 to 30, values of K/G ratio equal to 2000, 4000, 6000 and  (incompressible 
material) and diameter ratio of Do/Di =10 and Do/Di =5 are used.    
 
Figures A-13 to A-16 present graphs of the normalized shear strain at the inner and  the outer 
surfaces as calculated by equations (A-24) and (A-28), respectively (solid lines-presumed exact) 
and by equation (A-25) (dashed lines-approximate for inner surface strain).   The approximate 
equation (A-25) provides slightly conservative predictions for incompressible material behavior.  
While the approximate equation is only valid for incompressible material behavior, it may be 
observed that it provides reasonable estimates of the peak shear strain for all cases of shape 
factors and material properties considered.  This is due to the fact that the value of the peak shear 
strain is dominated by the effects of the central hole (which is captured in the approximate 
equation) rather than the material compressibility effects (which are not captured by the 
simplified equation). 
 
TABLE A-2 Normalized Maximum Shear Strain Values at the Inner Surface of Circular 
Hollow Bonded Rubber Layers 
 

INNER SURFACE 

  CIRCULAR HOLLOW Do/Di = 10 CIRCULAR HOLLOW Do/Di = 5 

NORMALIZED SHEAR STRAIN     
ఊ೎ீௌ
௉

஺ൗ
 

S 
K/G  K/G 

2000 4000 6000 ∞ 2000 4000 6000 ∞ 

5 3.18 3.18 3.18 3.18 2.34 2.33 2.33 2.33 

7.5 3.19 3.18 3.18 3.18 2.35 2.34 2.34 2.33 

10 3.19 3.18 3.18 3.18 2.36 2.35 2.34 2.33 

12.5 3.20 3.19 3.18 3.18 2.38 2.35 2.35 2.33 

15 3.21 3.19 3.19 3.18 2.41 2.37 2.35 2.33 

17.5 3.22 3.20 3.19 3.18 2.44 2.38 2.36 2.33 

20 3.25 3.20 3.19 3.18 2.47 2.40 2.37 2.33 

22.5 3.27 3.21 3.20 3.18 2.51 2.42 2.39 2.33 

25 3.30 3.23 3.21 3.18 2.55 2.44 2.40 2.33 

27.5 3.34 3.24 3.21 3.18 2.60 2.46 2.42 2.33 

30 3.38 3.26 3.22 3.18 2.66 2.49 2.43 2.33 
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TABLE A-3 Normalized Maximum Shear Strain Values at the Outer Surface of Circular 
Hollow Bonded Rubber Layers 
 

OUTER SURFACE 

  CIRCULAR HOLLOW Do/Di = 10 CIRCULAR HOLLOW Do/Di = 5 

NORMALIZED SHEAR STRAIN     
γౙGS
P

Aൗ
  

S 
K/G K/G 

2000 4000 6000 ∞ 2000 4000 6000 ∞ 
5 1.24 1.23 1.22 1.22 1.28 1.27 1.27 1.27 

7.5 1.26 1.24 1.23 1.22 1.31 1.29 1.28 1.27 
10 1.29 1.26 1.24 1.22 1.34 1.30 1.29 1.27 

12.5 1.33 1.28 1.26 1.22 1.37 1.32 1.30 1.27 
15 1.38 1.30 1.27 1.22 1.42 1.34 1.32 1.27 

17.5 1.43 1.33 1.29 1.22 1.47 1.37 1.34 1.27 
20 1.49 1.36 1.31 1.22 1.53 1.40 1.36 1.27 

22.5 1.55 1.40 1.34 1.22 1.59 1.44 1.38 1.27 
25 1.62 1.43 1.37 1.22 1.65 1.47 1.41 1.27 

27.5 1.69 1.48 1.39 1.22 1.72 1.51 1.44 1.27 
30 1.77 1.52 1.43 1.22 1.80 1.56 1.47 1.27 

 
Figures A-13 to A-16 also include results obtained in finite analysis that is described in Section 
A-2.5.  Results obtained for values of K/G equal to 4000 or for incompressible material, and for 
shape factor values S=5, 20 and 30 are in very good agreement with the theoretical solution.  
Some finite element results in Figure A-13 indicate that the theoretical solution overestimates the 
strain-however, the finite element results likely contain some error.  As explained in Section A-
2.5, some finite element analysis results contain errors particularly for the prediction of the 
maximum shear strain at the inner surface.  This is due to the very sharp variation of the shear 
strain very close to the free surface that is not correctly captured in the finite element analysis. 
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FIGURE A-13 Normalized Shear Strain Values at Inner Surface of Hollow Circular 
Bonded Layer with Do/Di =10 
 
 

 
 
FIGURE A-14 Normalized Shear Strain Values at Inner Surface of Hollow Circular 
Bonded Layer with Do/Di =5 
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FIGURE A-15 Normalized Shear Strain Values at Outer Surface of Hollow Circular 
Bonded Layer with Do/Di =10 
  

 
 
FIGURE A-16 Normalized Shear Strain Values at Outer Surface of Hollow Circular 
Bonded Layer with Do/Di =5 
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A-2.5  Finite Element Analysis of Circular Hollow Bonded Rubber Layers in Compression 
 
Finite element analysis (FEA) was utilized to verify that the theoretical results based on the 
“pressure solution” are valid and accurate.   The compression of circular hollow bonded rubber 
layers is an axi-symmetric problem that is easily modeled for finite element analysis.  The FEA 
model used isotropic axi-symmetric elements with quadratic displacement field and was 
implemented in ABAQUS.  Due to symmetry only half of the bonded rubber was analyzed.  
 
An example of finite element mesh (portion of mesh close to inner surface) used and results on 
the distribution of shear strains is shown in Figure A-17.  The boundary conditions implemented 
in the FEA model were: 
 Zero displacements in the X and Y directions at the Y=0 surface. 
 Zero displacement in the X direction and uniform downward displacement at Y=t. 

 
FIGURE A-17 Contour Plot of Shear Strain in Circular Hollow Bonded Layer 
  
For analysis, the thickness of the single rubber layer was selected arbitrarily to be t=10mm, the 
imposed vertical displacement was selected to be 1mm and analysis without geometric 
nonlinearities was conducted.  Plan dimensions were varied so that the shape factor S had values 
of 5, 20 or 30 and the ratio of diameters Do/Di was 5 or 10.  Isotropic material properties were 
selected so that the ratio K/G was either infinity (incompressible material) or 4000.  
 
Selected results on the calculated distributions of normal stresses and shear strains for the case 
K/G=4000, S=5, 20 and 30 and Do/Di =5 or 10 are presented in Figures A-18 to A-29.  In general, 
the results of finite element analysis confirm the validity and accuracy of the theoretical “pressure 
solution” p.  However, the finite element results for the case of shape factor S=5 contain errors as 
detected by the fluctuating values of normal stress and shear strain at the free edges.  The same 
behavior was observed in analyses of other values of shape factor and with incompressible 
material behavior.  The errors are likely due the very sharp variation of strain with distance very 
close to the edge that cannot be captured in finite element analysis.  In this case, we reported the 
values of shear strain in Figures A-13 to A-16 obtained by extrapolation to the free surface of the 
last calculated stable value in the finite element analysis.  
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FIGURE A-18 Normal Stress Distribution in Hollow Circular Pad for S=30 and Do/Di =10 
 
 

 
FIGURE A-19 Shear Strain Distribution in Hollow Circular Pad for S=30 and Do/Di =10 
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FIGURE A-20 Normal Stress Distribution in Hollow Circular Pad for S=20 and Do/Di =10 
 
 

 
FIGURE A-21 Shear Strain Distribution in Hollow Circular Pad for S=20 and Do/Di =10 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2r/Do

Compressive stress distribution ‐ CIRCULAR HOLLOW

Theory (all three)

σr; FEA; K/G=4000; 
S=20; Do/Di=10

σz; FEA; K/G=4000; 
S=20; Do/Di=10

σθ; FEA; K/G=4000; 
S=20; Do/Di=10

‐4.0

‐3.0

‐2.0

‐1.0

0.0

1.0

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2r/Do

Shear strain distribution ‐ CIRCULAR HOLLOW

Theory

FEA; K/G=4000; 
S=20; Do/Di=10



 

A-22 
 

 
FIGURE A-22 Normal Stress Distribution in Hollow Circular Pad for S=5 and Do/Di =10 
 
 
 

 
FIGURE A-23 Shear Strain Distribution in Hollow Circular Pad for S=5 and Do/Di =10 
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FIGURE A-24 Normal Stress Distribution in Hollow Circular Pad for S=30 and Do/Di =5 
 
 

 
FIGURE A-25 Shear Strain Distribution in Hollow Circular Pad for S=30 and Do/Di =5 
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FIGURE A-26 Normal Stress Distribution in Hollow Circular Pad for S=20 and Do/Di =5 
 
 

 
FIGURE A-27 Shear Strain Distribution in Hollow Circular Pad for S=20 and Do/Di =5 
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FIGURE A-28 Normal Stress Distribution in Hollow Circular Pad for S=5 and Do/Di =5 
 
 
 

 
FIGURE A-29 Shear Strain Distribution in Hollow Circular Pad for S=5 and Do/Di =5 
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A-2.6  Rectangular Bonded Rubber Layer in Compression 
 
A pressure solution for rectangular elastomeric bearings subjected to compression by force P was 
originally presented by Conversy (1967).  Subsequently, Stanton and Roeder (1982) and Kartoum 
(1987) derived solutions in terms if infinite series of trigonometric functions.  The two solutions 
have some differences in the appearance of the equations but they produce essentially identical 
numerical results.   Herein, we choose to present the solution in Kartoum (1987) as many details 
of the derivation are published.   
 
Figure A-30 presents the geometry of a single rectangular bonded layer.  A compressive force P 
applies in the vertical (z) direction.  Plan dimensions are L and B.  A square bearing has B=L.  A 
rectangular bearing has B>L and a strip bearing has B. 
 

 
FIGURE A-30 Geometry of Rectangular Bonded Rubber Layer 
 
The distribution of pressure (equal to all three normal stresses at every point in a bonded rubber 
layer) is given by: 
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In the above equation, εc ൌ P/AEc (compressive strain-equation B-5) where Ec is the 
compression modulus 
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Also,  
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Use of the definition of the compressive strain (equation A-5) and (A-30) in (A-29), the 
expression for the pressure becomes: 
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The two non-zero components of shear strain are given by: 
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Substitution of (A-34) in (A-35) and (A-36) results in: 
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The maximum value of shear strain γxz = γc occurs at the location (see Figure A-30) Y = 0 and X 
= ±L/2.  For square bearings, the maximum shear strain is γxz = γc at Y = 0 and X = ±L/2, which 
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is equal to γyz at X = 0 and Y = ±L/2.   The normalized value of maximum shear strain at location 
Y = 0 and X = ±L/2 is  
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Tables A-4 to A-7 present values of the normalized maximum shear strain values for rectangular 
bearings  for a range of values of shape factor, K/G ratio of 2000, 4000, 6000 and  
(incompressible material),  and aspect ratio L/B in the range of 0 (strip bearing) to 1 (square 
bearing).  Values of the normalized maximum shear strain are also plotted in Figures A-31 to A-
34.   
 

TABLE A­4 Normalized Maximum Shear Strain Values of Rectangular Bonded Rubber 
Layers for K/G=2000 
 

RECTANGULAR 

K/G = 2000 NORMALIZED SHEAR STRAIN   
ఊ೎ீௌ
௉

஺ൗ
 

L/B 0 0.2 0.4 0.6 0.8 1 
S             
5 1.53 1.44 1.39 1.33 1.27 1.22 

7.5 1.55 1.45 1.41 1.35 1.30 1.25 
10 1.57 1.48 1.43 1.38 1.33 1.29 

12.5 1.60 1.51 1.46 1.41 1.37 1.34 
15 1.64 1.54 1.50 1.46 1.42 1.39 

17.5 1.69 1.59 1.54 1.51 1.48 1.45 
20 1.74 1.64 1.60 1.56 1.54 1.52 

22.5 1.79 1.70 1.65 1.63 1.61 1.59 
25 1.85 1.76 1.72 1.69 1.68 1.66 

27.5 1.92 1.83 1.79 1.77 1.75 1.74 
30 1.98 1.90 1.86 1.84 1.83 1.82 
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TABLE A­5 Normalized Maximum Shear Strain Values of Rectangular Bonded Rubber 
Layers for K/G=4000 
 

RECTANGULAR 

K/G = 4000 NORMALIZED SHEAR STRAIN   
γౙGS
P

Aൗ
 

L/B 0 0.2 0.4 0.6 0.8 1 
S             
5 1.52 1.43 1.39 1.33 1.26 1.21 

7.5 1.53 1.44 1.40 1.34 1.27 1.22 
10 1.54 1.45 1.41 1.35 1.29 1.24 

12.5 1.56 1.47 1.42 1.37 1.31 1.27 
15 1.58 1.48 1.44 1.39 1.34 1.30 

17.5 1.60 1.50 1.46 1.41 1.37 1.33 
20 1.63 1.53 1.48 1.44 1.40 1.37 

22.5 1.66 1.56 1.51 1.48 1.44 1.41 
25 1.69 1.59 1.55 1.51 1.48 1.46 

27.5 1.72 1.63 1.58 1.55 1.52 1.50 
30 1.76 1.67 1.62 1.59 1.57 1.55 

 

TABLE A­6 Normalized Maximum Shear Strain Values of Rectangular Bonded Rubber 
Layers for K/G=6000 
 

RECTANGULAR 

K/G = 6000 NORMALIZED SHEAR STRAIN   
γౙGS
P

Aൗ
 

L/B 0 0.2 0.4 0.6 0.8 1 
S             
5 1.52 1.43 1.39 1.32 1.26 1.21 

7.5 1.52 1.44 1.39 1.33 1.27 1.22 
10 1.53 1.44 1.40 1.34 1.28 1.23 

12.5 1.54 1.45 1.41 1.35 1.29 1.25 
15 1.56 1.46 1.42 1.36 1.31 1.27 

17.5 1.57 1.48 1.43 1.38 1.33 1.29 
20 1.59 1.49 1.45 1.40 1.35 1.32 

22.5 1.61 1.51 1.47 1.42 1.38 1.35 
25 1.63 1.53 1.49 1.45 1.41 1.38 

27.5 1.66 1.56 1.51 1.47 1.44 1.41 
30 1.68 1.59 1.54 1.50 1.47 1.45 
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TABLE A­7 Normalized Maximum Shear Strain Values of Rectangular Bonded Rubber 
Layers for K/G=∞ 
 

RECTANGULAR 

K/G = ∞ NORMALIZED SHEAR STRAIN   
ஓౙGS
P

Aൗ
 

L/B 0 0.2 0.4 0.6 0.8 1 
S             
5 1.51 1.43 1.38 1.32 1.25 1.20 

7.5 1.51 1.43 1.38 1.32 1.25 1.20 
10 1.51 1.43 1.38 1.32 1.25 1.20 

12.5 1.51 1.43 1.38 1.32 1.25 1.20 
15 1.51 1.43 1.38 1.32 1.25 1.20 

17.5 1.51 1.43 1.38 1.32 1.25 1.20 
20 1.51 1.43 1.38 1.32 1.25 1.20 

22.5 1.51 1.43 1.38 1.32 1.25 1.20 
25 1.51 1.43 1.38 1.32 1.25 1.20 

27.5 1.51 1.43 1.38 1.32 1.25 1.20 
30 1.51 1.43 1.38 1.32 1.25 1.20 

 

 
 
FIGURE A-31 Normalized Maximum Shear Strain Values of Rectangular Bonded Rubber 
Layers for K/G=2000 
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FIGURE A-32 Normalized Maximum Shear Strain Values of Rectangular Bonded Rubber 
Layers for K/G=4000 
 

 
 
FIGURE A-33 Normalized Maximum Shear Strain Values of Rectangular Bonded Rubber 
Layers for K/G=6000 
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FIGURE A-34 Normalized Maximum Shear Strain Values of Rectangular Bonded Rubber 
Layers for K/G=∞ 
 
The graphs in Figures A-32 (K/G=4000) and A-34 (incompressible material) also include data 
obtained in finite element analysis of square bearings for three different values of the shape 
factor.  The results of finite element analysis provide verification of the accuracy of the 
theoretical solution.  Details of the finite element analysis are presented in Section A-2.7.   
 

A-2.7  Finite Element Analysis of Square Bonded Rubber Layers in Compression 
 
Finite element analysis (FEA) was utilized to verify that the theoretical results based on the 
“pressure solution” are valid and accurate.   Only square bearings were analyzed.  The 
compression of square bonded rubber layers is a three-dimensional problem that is easily 
modeled for finite element analysis, however is computationally complex due to the large number 
of elements required.  The FEA model used isotropic hexahedral, 20-noded elements and was 
implemented in ABAQUS.  Due to symmetry only one quarter of the bearing was analyzed with 
dimensions L x B/2 x t/2.  Only one element was used over the depth of t/2 and this may have led 
to some errors in the analysis. 
 
The finite element mesh used is shown in Figure A-35 and a typical result on the distribution of 
shear strains is shown in Figure A-36.  The boundary conditions implemented in the FEA model 
(see Figure A-35 for axis directions) were: 
 Zero displacements in the Y direction at the Y=0 surface. 
 Zero displacement in the X, Y and Z directions at point X=L/2, Y=0 and Z=B/2 (center of 

bearing).  
 Zero displacement in the X and Z directions and uniform downward displacement at Y=t/2. 
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 Zero displacement in the Z direction at the axis of symmetry Z=B/2. 

 
FIGURE A-35  Three-dimensional Finite Element Mesh used in Rubber Layer 

Compression 

 
FIGURE A-36  Contour Plot of the Shear Strain in XY Plane (maximum occurs at Z=B/2) 
 
Selected results on the calculated distributions of normal stresses and shear strains for the case 
K/G=4000 and shape factor S=5, 20 and 30 are presented in Figures A-37 to A-42.  The shown 
distributions of stresses and strains are presented for the coordinate system shown in Figure A-
30.   In general, the results of finite element analysis confirm the validity and accuracy of the 
theoretical “pressure solution”.  However, it may be seen that the finite element results for the 
normal stress are slightly higher than those predicted by the theoretical solution.  This does not 
affect the prediction of shear strains which are related to the slope of the normal stress-that slope 
being accurately predicted by the theoretical solution.  Also, the finite element solution for the 
shear strains shows fluctuating values in the neighborhood of the free edges.  These fluctuations 
are accompanied by incorrect results on the normal stress at the same locations (for example, see 
Figure A-41-the normal stress σx should be zero at the free boundary but is not).  When the shear 
strain values exhibited fluctuating behavior, the value of peak shear strain reported in Figures A-
32 and A-34 were obtained by interpolation of the fluctuating values.  This may have introduced 
some error in the finite element results of Figures A-32 and A-34. 
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FIGURE A-37 Normal Stress Distribution in Square Pad for S=30 
 

 
FIGURE A-38 Shear Strain Distribution in Square Pad for S=30 
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FIGURE A-39 Normal Stress Distribution in Square Pad for S=20 
 
 

 
FIGURE A-40 Shear Strain Distribution in Square Pad for S=20 
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FIGURE A-41 Normal Stress Distribution in Square Pad for S=5 
 
 

 
FIGURE A-42 Shear Strain Distribution in Square Pad for S=5
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A-3 ANALYSIS OF ROTATION 
 
A-3.1 Introduction 
 
Like the analysis of compression, the analysis of elastomeric bearings subjected to rotation is too 
complex to allow for simple solutions that are practical in design.   Herein, we concentrate on 
solutions for the maximum shear strain as a result of rotation of single bonded layer of rubber.  
Figure A-43 illustrates the problem considered in this work.  Considering a single constrained 
rubber layer, a moment M along the transverse axis induces a rotation θ causing a maximum 
shear strain near the free edge of the pad and compressive stresses as shown in Figure A-43.  For 
this analysis, variables of interest are the maximum shear strain γr and the rotational modulus Er , 
which will be discussed later in this section. 
 
Available solutions for the distribution of stresses and strain in bonded rubber layers subjected to 
rotation are based on the simplifications of the “pressure solution” (Conversy 1967).  The basic 
assumptions of this theory are the same as those for compression presented in Section A-2.1.  The 
difference in the case of rotation is that the imposed displacement field is not constant but rather 
linearly varying.  The solutions utilized herein are the one of Chalhoub and Kelly (1990) for the 
circular pad and the one of Kartoum (1987) for the rectangular pad.  No published solution is 
available for the circular hollow pad.  In this case the results presented herein are based on finite 
element analysis. 

 
 
FIGURE A-43  Behavior of a Constrained Rubber Layer Subjected to Rotation 
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A-3.2 Circular Bonded Rubber Layer Subjected to Rotation 
 
Similar to the solution for the compression of circular pads, Chalhoub and Kelly (1990) derived a 
“pressure solution” for the rotation of circular bonded rubber layers.  The distribution of pressure 
(equal to all three normal stresses at every point in a bonded rubber layer) is given by: 
 

pሺr,ሻ ൌ θ
K

t
൤R

I1ሺλrሻ
I1ሺλRሻ

െ r൨ sin                                                                                                     ሺA െ 41ሻ 

 
In equation (A-41), θ is the imposed angle of rotation of the pad (see Figure A-43), R is the 
radius of the circular area (R=D/2, where D is the diameter) and r (radial dimension) and  (angle 
measured from the y-axis) are the polar coordinates.  Also, I1 is the modified Bessel function of 
the first kind and order one and K is the rubber bulk modulus.  Angle  equals zero along the axis 
of rotation (also axis of moment).   
 
The moment inducing rotation θ is given by: 
 

ܯ ൌ
πKθ

t

Rଶ

λ2 ቆ
λRIଶሺλRሻ

IଵሺλRሻ
െ

λଶRଶ

4
ቇ 

πKθ

t
 
λ2R6

96
 ቆ1 െ

λ2R2

1536
ቇ                                                  ሺA െ 42ሻ 

 

λ ൌ ඨ
12

ቀK
Gቁ t2

                                                                                                                                       ሺA െ 43ሻ 

 
In equation (A-42), I2 is the modified Bessel function of the first kind and order two.  Also, the 
approximate expression in the same equation is valid for small values of parameter R.   
Equation (A-42) is used to obtain the rotational modulus Er, valid for small values of parameter 
R (equivalent to large bulk to shear modulus ratio or small shape factor): 
 

Er ൌ  
Mt

Iθ
ൌ

K λ2R2

24
 ቆ1 െ

λ2R2

1536
ቇ                                                                                                 ሺA െ 44ሻ 

 
In (A-44), I is the moment of inertia of the cross section of the pad about the axis of rotation:  
 

I ൌ
πR4

4
                                                                                                                                                  ሺA െ 45ሻ 

 
Another quantity utilized in the presentation of results is the maximum “bending” stress 
σbdefined as: 
 

σb ൌ
MR

I
                                                                                                                                               ሺA െ 46ሻ 
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The distribution of pressure along the axis for which =0 (maximum pressure) is given by the 
following equation, in which the expression for maximum bending 
stress σb for small values of parameter R is used: 
 

pሺrሻ

σb
ൌ

24

λ2Rଶ  
൤

I1ሺλrሻ
I1ሺλRሻ െ r

R൨ 

ቆ1 െ λ2R2

1536ቇ
                                                                                                            ሺA െ 47ሻ 

 
The shear strain along the radial axis r for =0 is obtained by use of equations (A-8) and (A-41) 
and is given by: 
 

γrz ൌ
ሺK/Gሻθ

2
 ൜

λR
I1ሺλRሻ

൤I0ሺλrሻ െ
I1ሺλrሻ
λr

൨ െ 1ൠ                                                                              ሺA െ 48ሻ 

 
In equation (A-48), I0 is the modified Bessel function of the first kind and order zero. The 
maximum shear strain γr occurs at r= R and is given below after being cast in a normalized form 
and in terms of parameters S and K/G: 
 
γrt

2

D2θ
ൌ

ሺK/Gሻ

16S2 ൥
S√12

ඥK/G

I0൫2Sඥ12G/K൯

I1ሺ2Sඥ12G/Kሻ
െ 1൩                                                                                ሺA െ 49ሻ 

 
The normalization of the peak shear strain is such that it can be compared to values currently 
specified in design standards and specifications (e.g., 1999 AASHTO and its 2010 revision).  
These specifications utilize a value of the normalized shear strain equal to 0.5-a value appropriate 
for strip bearings of incompressible material. 
 
Table A-8 presents values of normalized maximum shear strain calculated by equation (A-49).  
(Note that values are truncated to accuracy of two decimals.  The exact value of the normalized 
strain for infinite ratio of K/G is 0.375).  It may be noted that values of the normalized shear 
strain may be substantially less than 0.5 at large shape factors utilized in seismic isolation 
applications. 
 
Values of the normalized maximum shear strain are plotted in Figure A-44.  The figure also 
includes results of finite element analysis which is described in Section A-3.3.  The results of 
finite element analysis are for the case of K/G=4000 or  (incompressible material) and of shape 
factor S equal to 5, 20 or 30.  The finite element results confirm the validity and accuracy of the 
results of the theoretical solution.  Further details are provided in Section A-3.3. 
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TABLE A-8 Maximum Normalized Shear Strain Values of Circular Bonded Rubber Layer 
Subjected to Rotation  
 

CIRCULAR 

NORMALIZED SHEAR STRAIN   
γ౨୲మ

Dమθ
 

S 
K/G 

2000 4000 6000 ∞ 

5 0.37 0.37 0.37 0.37 

7.5 0.36 0.36 0.37 0.37 

10 0.34 0.36 0.36 0.37 

12.5 0.33 0.35 0.36 0.37 

15 0.31 0.34 0.35 0.37 

17.5 0.30 0.33 0.34 0.37 

20 0.28 0.32 0.33 0.37 

22.5 0.27 0.31 0.32 0.37 

25 0.25 0.29 0.32 0.37 

27.5 0.24 0.28 0.31 0.37 

30 0.23 0.27 0.30 0.37 
 

 
 
FIGURE A-44 Normalized Maximum Shear Strain of Circular Rubber Bonded Layer 
Subjected to Rotation 
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A-3.3 Finite Element Analysis of Circular Bonded Rubber Layers Subjected to Rotation 
 
Unlike compression, rotation of circular bonded pads is not an axi-symmetric problem and a 3-
dimensional mesh is needed for finite element analysis.  This analysis was conducted as linear 
elastic with solid isotropic elements having a quadratic displacement field.  Symmetry was 
utilized so that half of the pad was analyzed.  Figure B-45 shows a plan view of the finite element 
mesh used together with calculated contours of shear strain ୰୸for rotation about the Y axis.  The 
maximum shear strain γ୰ occurs very close to the free surface as shown in Figure A-45. 
 
The boundary conditions implemented in the finite element model (see Figure A-45 for axis 
directions) were: 
 Zero displacements in the X, Y and Z directions at the Y=0 surface (bottom). 
 Zero displacement in the X and Y directions at the Y=t surface (top) 
 Downwards displacement in the Z (vertical direction) at the Y=t surface (top) equal to θX, 

where θ is the imposed angle of rotation (herein used a unit value). 
 Zero displacements in the Y and Z directions at the surface X=0. 

 

 
FIGURE A-45  Finite Element Mesh and Contour Plot of Shear Strain xz in Circular 

Bonded Rubber Layer Subjected to Rotation about Axis Y 
 
Figures A-46 to A-51 present selected results of the finite element analysis for the normalized 
compressive stress (presented in cylindrical coordinates) and the normalized shear strain along 
axis X=0 in circular bonded layers under rotation and compares them to theoretical results based 
on equations (A-47) and (A-48).  Results are presented for shape factor values S=5, 20 and 30 
and for K/G=4000.  There is very agreement between the finite element analysis and the 
theoretical results except for some small differences in the distribution of normal stress at the free 
boundary in the S=5 case (Figure A-50).  In this case, the finite element analysis results contain 
some small error as evident in the prediction of non-zero stress σ୰ at the free boundary. 
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FIGURE A-46 Normalized Normal Stress in Circular Bonded Layer of S=30 Subject to 
Rotation 
 

 
FIGURE A-47 Normalized Shear Strain in Circular Bonded Layer of S=30 Subject to 
Rotation 
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FIGURE A-48 Normalized Normal Stress in Circular Bonded Layer of S=20 Subject to 
Rotation 

 

 
FIGURE A-49 Normalized Shear Strain in Circular Bonded Layer of S=20 Subject to 
Rotation 
 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2r/D

Compressive stress distribution ‐ CIRCULAR

Theory (all three)

FEA; σr; 
K/G=4000; S=20

FEA; σθ; 
K/G=4000; S=20

FEA; σz; 
K/G=4000; S=20

‐0.40

‐0.30

‐0.20

‐0.10

0.00

0.10

0.20

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2r/D

Shear strain distribution ‐ CIRCULAR

Theory

FEA; 
K/G=4000; 
S=20



 

A-44 
 

 
FIGURE A-50 Normalized Normal Stress in Circular Bonded Layer of S=5 Subject to 
Rotation 
 

 
FIGURE A-51 Normalized Shear Strain in Circular Bonded Layer of S=5 Subject to 
Rotation 
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A-3.4 Circular Hollow Bonded Rubber Layer Subjected to Rotation 

 
There is no published theoretical solution for the distribution of stresses in bonded circular 
hollow rubber pads subjected to rotation.   Herein, finite element analysis is used to derive results 
for the maximum shear strain.  The results are cast into a form that is useful for the design of 
elastomeric bearings.  It should be noted that like the case of compression the results apply for 
hollow bearings in which rubber is allowed to freely bulge at the inner surface.  The solution does 
not apply to lead-rubber bearings for which the central hole is plugged with lead and rubber is not 
allowed to bulge.   
 
The finite element mesh utilized followed the example of the circular pad described in Section A-
3.3 except for the inclusion of a central hole.   The boundary conditions implemented in the finite 
element model were identical to those for the circular pad.   Figure A-52 presents a representative 
plan view of the finite element mesh used together with calculated contours of shear strain ୰୸for 
rotation about the Y axis.  The maximum shear strain γ୰ occurs very close to the outer free 
surface as shown in the figure.  However, a large value of shear strain also occurs very close to 
the inner free surface.   
 
Analysis was conducted for shape factors S=5, 20 and 30, ratio K/G=2000, 4000, 6000 and  
(incompressible material) and diameter ratio Do/Di = 5 and 10.  Calculated values of the 
maximum shear strain were normalized and are presented in Tables A-9 and A-10, respectively 
for the outer and inner surfaces of the hollow circular pad.   The normalized maximum shear 

strain is defined as  
ஓ౨୲మ

D౥
మ஘

 , where γ୰ is the maximum value of the shear strain. Note that current 

specifications for the design of elastomeric bearings (e.g., 1999 AASHTO and its 2010 revision) 
assign a value of 0.5 to this quantity regardless of geometry or material properties.   The data in 
Table A-9 and A-10 suggest lower values than 0.5 for the normalized shear strain.   

 
FIGURE A-52  Finite Element Mesh and Contour Plot of Shear Strain xz in Circular 

Hollow Bonded Rubber Layer Subjected to Rotation about Axis Y 
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Calculated values of stresses and shear strains along axis X in the finite element analysis are 
presented in Figures A-53 to A-64.  These graphs present (a) normal stresses (σr, σθ and σz) 
divided by the maximum value of normal stress (so that in each graph the normalized stress has a 

peak value of unity) and (b) shear strains γ୶୸ normalized as  
γxzt2

Do
2θ

.  Note that direction X is the 

same as the radial direction r so that γ୶୸ ൌ γ୰୸  . The plotted distributions of stress and strain 
indicate accuracy in the results of finite element analysis except for some errors in the case of 
shape factor of 5 where fluctuating shear strains and normal stresses were calculated.   
 

TABLE A-9 Maximum Normalized Shear Strain Values at the Outer Surface of Circular 
Hollow Bonded Rubber Layer Subjected to Rotation 
 

CIRCULAR HOLLOW 

NORMALIZED SHEAR STRAIN  AT OUTER SURFACE   
γ౨୲మ

D౥
మθ

 

S 
Do/Di = 10 Do/Di = 5 

K/G K/G 

2000 4000 6000 ∞ 2000 4000 6000 ∞ 

5 0.37 0.38 0.38 0.38 0.36 0.36 0.37 0.37 
20 0.27 0.31 0.33 0.38 0.25 0.29 0.31 0.37 
30 0.22 0.27 0.29 0.38 0.20 0.25 0.27 0.37 

 

TABLE A-9 Maximum Normalized Shear Strain Values at the Inner Surface of Circular 
Hollow Bonded Rubber Layer Subjected to Rotation 
 

CIRCULAR HOLLOW 

NORMALIZED SHEAR STRAIN AT INNER SURFACE   
γ౨୲మ

D౥
మθ

 

S 
Do/Di = 10 Do/Di = 5 

K/G K/G 

2000 4000 6000 ∞ 2000 4000 6000 ∞ 

5 0.30 0.31 0.31 0.32 0.31 0.31 0.32 0.33 
20 0.18 0.23 0.26 0.33 0.18 0.23 0.25 0.33 
30 0.12 0.19 0.23 0.33 0.12 0.18 0.22 0.33 
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FIGURE A-53 Normalized Normal Stress in Circular Hollow Bonded Layer of S=30 and 
K/G=4000 Subject to Rotation 
 

 
 
FIGURE A-54 Normalized Shear Strain in Circular Hollow Bonded Layer of S=30 and 
K/G=4000 Subject to Rotation 
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FIGURE A-55 Normalized Normal Stress in Circular Hollow Bonded Layer of S=30 and 
Incompressible Material Subject to Rotation 
 
 

 
 
FIGURE A-56 Normalized Shear Strain in Circular Hollow Bonded Layer of S=30 and 
Incompressible Material Subject to Rotation 
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FIGURE A-57 Normalized Normal Stress in Circular Hollow Bonded Layer of S=20 and 
K/G=4000 Subject to Rotation 
 
 

 
 
FIGURE A-58 Normalized Shear Strain in Circular Hollow Bonded Layer of S=20 and 
K/G=4000 Subject to Rotation 
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FIGURE A-59 Normalized Normal Stress in Circular Hollow Bonded Layer of S=20 and 
Incompressible Material Subject to Rotation 
 
 

 
 
FIGURE A-60 Normalized Shear Strain in Circular Hollow Bonded Layer of S=20 and 
Incompressible Material Subject to Rotation 
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FIGURE A-61 Normalized Normal Stress in Circular Hollow Bonded Layer of S=5 and 
K/G=4000 Subject to Rotation 
 

 
 
FIGURE A-62 Normalized Shear Strain in Circular Hollow Bonded Layer of S=5 and 
K/G=4000 Subject to Rotation 
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FIGURE A-63 Normalized Normal Stress in Circular Hollow Bonded Layer of S=5 and 
Incompressible Material Subject to Rotation 
 

 
 
FIGURE A-64 Normalized Shear Strain in Circular Hollow Bonded Layer of S=5 and 
Incompressible Material Subject to Rotation 
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A-3.5   Rectangular Bonded Rubber Layer Subjected to Rotation 

 
The analysis for rotation of rectangular bearings follows closely the analysis for compression.  
Theoretical results for rotation of compressible rectangular pads based on the “pressure solution” 
have been presented by Conversy (1967), Stanton and Roeder (1982) and Kartoum (1987).  
Herein, we concentrate on the solution presented by Kartoum (1987). 
 
 Consider a rectangular block of dimensions L x B x t, as shown in Figure A-30 and subjected to 
rotation by angle θ about axis Y (corresponding moment about Y axis is M).   The “pressure 
solution” is given by: 
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3GL3θ
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The moment M inducing rotation θ is: 
 

M ൌ
3

2

GL5Bθ

π4t3
 ෍

1

n4Qn
2

∞

nୀ1

ቈ1 െ
tanhφn

φn

቉                                                                                          ሺA െ 54ሻ 

 
The rotational modulus is defined as follows where I is the moment of inertia (I=L3B/12): 
 

Er ൌ
Mt

Iθ
                                                                                                                                                 ሺA െ 55ሻ 

 
Using (B-54), the rotational modulus is derived as 
 

Er ൌ  
72GS2ሺ1 ൅ L/Bሻ2

π4 ෍
1

n4Qn
2

∞

nୀ1

ቈ1 െ
tanhφn

φn

቉                                                                        ሺA െ 56ሻ 

 
Similar to equation (A-46), the bending stress is defined as  
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σb ൌ
ML

2I
                                                                                                                                               ሺA െ 57ሻ 

 
By use of (A-54), the bending stress is obtained as  
 

σb ൌ  
9GL3θ

π4t3
෍

1

n4Qn
2

∞
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The normalized pressure is then obtained as: 
  

pሺX, Yሻ
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π
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The shear strains γxz and γyz are obtained by use of equations (A-35) and (A-36) and after 

normalization they are: 
 
γxzt

2
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The maximum shear strain is γxz  and occurs at Y = 0 and X =±L/2 for B>L.  For square bearings 
(B=L), the peak strain occurs at Y=0 and X =±L/2 and is equal to the strain at X=0 and Y=±L/2.  
The maximum value of the shear strain, denoted as γr, is given by the following equation, after 
normalization: 
 
γrt

2

L2θ
ൌ

3

π2  ෍
ሺെ1ሻnା1

n2Qn
2

∞

nୀ1

ቈ1 െ
1

cosh φn

቉ cos nπ                                                                                 ሺA െ 62ሻ 

 
 
Tables A-11 to A-14 present values of the normalized maximum shear strain values for 
rectangular bearings  for a range of values of shape factor, K/G ratio of 2000, 4000, 6000 and  
(incompressible material),  and aspect ratio L/B in the range of 0 (strip bearing) to 1 (square 
bearing).  Values of the normalized maximum shear strain are also plotted in Figures A-65 to A-
68.   The values of the normalized shear strain are generally less than 0.5 (value for strip bearing 
of incompressible material).  They are substantially less than 0.5 for square bearings of large 
shape factor which is of significance in seismic isolation.  Note that current specifications for 
elastomeric bearing design (e.g., 1999 AASHTO and its 2010 revision) specify a value for the 
normalized shear strain equal to 0.5 regardless of geometry or material properties. 
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TABLE A-11 Maximum Normalized Shear Strain Values at of Rectangular Bonded 
Rubber Layer with K/G=2000 Subjected to Rotation 
 

RECTANGULAR 

K/G = 2000 NORMALIZED SHEAR STRAIN   
γ౨୲మ

Lమθ
 

L/B 0 0.2 0.4 0.6 0.8 1 
S             
5 0.49 0.49 0.49 0.48 0.47 0.46 

7.5 0.49 0.48 0.48 0.47 0.46 0.44 
10 0.48 0.47 0.46 0.45 0.44 0.42 

12.5 0.47 0.46 0.45 0.43 0.41 0.39 
15 0.46 0.44 0.43 0.41 0.39 0.37 

17.5 0.45 0.43 0.41 0.39 0.37 0.35 
20 0.43 0.41 0.39 0.37 0.35 0.32 

22.5 0.42 0.39 0.37 0.35 0.32 0.30 
25 0.41 0.38 0.35 0.33 0.31 0.28 

27.5 0.39 0.36 0.34 0.31 0.29 0.27 
30 0.38 0.35 0.32 0.29 0.27 0.25 

 

TABLE A-12 Maximum Normalized Shear Strain Values at of Rectangular Bonded 
Rubber Layer with K/G=4000 Subjected to Rotation 
 

RECTANGULAR 

K/G = 4000 NORMALIZED SHEAR STRAIN   
γ౨୲మ

Lమθ
   

L/B 0 0.2 0.4 0.6 0.8 1 
S             
5 0.50 0.49 0.49 0.49 0.48 0.46 

7.5 0.49 0.49 0.49 0.48 0.47 0.45 
10 0.49 0.48 0.48 0.47 0.46 0.44 

12.5 0.48 0.48 0.47 0.46 0.45 0.43 
15 0.48 0.47 0.46 0.45 0.43 0.41 

17.5 0.47 0.46 0.45 0.43 0.42 0.40 
20 0.46 0.45 0.43 0.42 0.40 0.38 

22.5 0.45 0.44 0.42 0.40 0.38 0.36 
25 0.45 0.43 0.41 0.39 0.37 0.35 

27.5 0.44 0.42 0.39 0.37 0.35 0.33 
30 0.43 0.40 0.38 0.36 0.34 0.31 
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TABLE A-13 Maximum Normalized Shear Strain Values at of Rectangular Bonded 
Rubber Layer with K/G=6000 Subjected to Rotation 
 

RECTANGULAR 

K/G = 6000 NORMALIZED SHEAR STRAIN   
γ౨୲మ

Lమθ
 

L/B 0 0.2 0.4 0.6 0.8 1 
S             
5 0.50 0.50 0.50 0.49 0.48 0.47 

7.5 0.49 0.49 0.49 0.49 0.48 0.46 
10 0.49 0.49 0.49 0.48 0.47 0.45 

12.5 0.49 0.48 0.48 0.47 0.46 0.44 
15 0.48 0.48 0.47 0.46 0.45 0.43 

17.5 0.48 0.47 0.46 0.45 0.44 0.42 
20 0.47 0.46 0.45 0.44 0.42 0.40 

22.5 0.47 0.46 0.44 0.43 0.41 0.39 
25 0.46 0.45 0.43 0.42 0.40 0.38 

27.5 0.45 0.44 0.42 0.40 0.38 0.36 
30 0.45 0.43 0.41 0.39 0.37 0.35 

 
Figures A-66 and A-68 also include results of finite element analysis for square bearings with 
K/G=4000 or incompressible material and shape factor S=5, 20 or 30.  Details of the finite 
element analysis are presented in Section A-3.6.  Evidently, the finite element analysis results 
confirm the validity and accuracy of the theoretical solution. 

TABLE A-14 Maximum Normalized Shear Strain Values at of Rectangular Bonded 
Rubber Layer with Incompressible Material Subjected to Rotation 
 

RECTANGULAR 

K/G = ∞ NORMALIZED SHEAR STRAIN   
γ౨୲మ

Lమθ
 

L/B 0 0.2 0.4 0.6 0.8 1 
S             
5 0.50 0.50 0.50 0.50 0.49 0.47 

7.5 0.50 0.50 0.50 0.50 0.49 0.47 
10 0.50 0.50 0.50 0.50 0.49 0.47 

12.5 0.50 0.50 0.50 0.50 0.49 0.47 
15 0.50 0.50 0.50 0.50 0.49 0.47 

17.5 0.50 0.50 0.50 0.49 0.49 0.47 
20 0.50 0.50 0.50 0.49 0.49 0.47 

22.5 0.50 0.50 0.50 0.49 0.49 0.47 
25 0.50 0.50 0.50 0.49 0.49 0.47 

27.5 0.50 0.50 0.50 0.49 0.49 0.47 
30 0.50 0.50 0.50 0.49 0.49 0.47 
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FIGURE A-65 Maximum Normalized Shear Strain Values at of Rectangular Bonded 
Rubber Layer with K/G=2000 Subjected to Rotation 
 

 

FIGURE A-66 Maximum Normalized Shear Strain Values at of Rectangular Bonded 
Rubber Layer with K/G=4000 Subjected to Rotation 
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FIGURE A-67 Maximum Normalized Shear Strain Values at of Rectangular Bonded 
Rubber Layer with K/G=6000 Subjected to Rotation 
 

 

FIGURE A-68 Maximum Normalized Shear Strain Values at of Rectangular Bonded 
Rubber Layer with Incompressible Material Subjected to Rotation 
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A-3.6 Finite Element Analysis of Rectangular Bonded Rubber Layers Subjected to Rotation 
 
Finite element analysis was conducted for square bonded layers.  Similar to the analysis of the 
circular pad in rotation, the finite element mesh utilized solid isotropic elements with quadratic 
displacement field.  Half of the bearing was modeled with dimensions L/2 x B x t.  Figure A-69 
shows a plan of the utilized mesh and an example of result for the shear strain γ୶୸.   The 
boundary conditions implemented in the finite element model (see Figure 45 for axis directions) 
were: 
 Zero displacements in the X, Y and Z directions at the Y=0 surface (bottom). 
 Zero displacement in the X and Y directions at the Y=t surface (top) 
 Downwards displacement in the Z (vertical direction) at the Y=t surface (top) equal to θX, 

where θ is the imposed angle of rotation (herein used a unit value). 
 Zero displacements in the Y and Z directions at the surface X=0. 

 
FIGURE A-69 Finite Element Mesh and Contour Plot of Shear Strain xz in Square Bonded 
Rubber Layer Subjected to Rotation about Axis Y 
 
Results of finite element analysis are presented in Figures A-70 to A-75 for K/G=4000 and shape 
factor S=5, 20 or 30.  These results consist of distributions of normalized normal stress and 
normalized shear strain along the X axis and for Y=0.  The finite element results are compared to 
the theoretical results based on equations (A-59) and (A-61).  The theoretical and finite element 
analysis results compare very well, confirming thus the accuracy of the theoretical solution.  Note 
that some differences in the results of the two analyses for shape factor 5 are due to errors in the 
finite element analysis which incorrectly predicts some non-zero normal stress σ୶ at the free 
boundary and also fluctuating values of shear strain. 
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FIGURE A-70 Normalized Normal Stress in Square Bonded Layer of S=30 Subject to 
Rotation 
 

 
 
FIGURE A-71 Normalized Shear Strain in Square Bonded Layer of S=30 Subject to 
Rotation 
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FIGURE A-72 Normalized Normal Stress in Square Bonded Layer of S=20 Subject to 
Rotation 
 
 

 
 
FIGURE A-73 Normalized Shear Strain in Square Bonded Layer of S=20 Subject to 
Rotation 
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FIGURE A-74 Normalized Shear Strain in Square Bonded Layer of S=5 Subject to 
Rotation 
 

 
 
FIGURE A-75 Normalized Shear Strain in Square Bonded Layer of S=5 Subject to 
Rotation 
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A-4  ANALYSIS OF SHEAR 
 
Elastomeric bearings are typically constructed with large shape factor with values larger than 5.  
In bridge applications, typically values of the shape factor are around 10.  In seismic isolation 
applications, much larger values are often utilized-with typical value of 20 to 30.   Under such 
geometric conditions a rubber bearing subjected to lateral deformation experiences pure shear 
(Stanton and Roeder, 1982).  Accordingly, the shear strain in the rubber, γs, is calculated as: 
 

γs ൌ
∆
Tr

                                                                                                                                                  ሺA െ 63ሻ 

 
In this equation, Δ is the lateral deformation due and T୰ is the total thickness of rubber. 
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A-5  ANALYSIS OF TORSION 
 
Torsion in elastomeric bearings is induced by the plan rotation of the structure due to (a) 
eccentricity between the center of mass and the center of resistance of the isolation system and 
(b) torsional ground motion.  In general, the effect of torsion is to increase the lateral bearing 
displacement and to induce a torsional angle of rotation .  This angle of rotation is of the order 
of 0.01rad (Constantinou et al, 2007) 
 
The increase in the lateral displacement due to torsion is typically included in the calculation of 
the shear strain (see Section 4).  The angle of rotation induces additional shear strain that is 
additive to the shear strain due to lateral deformation: 
 

γ ൌ ߶
r

Tr
                                                                                                                                                ሺA െ 64ሻ 

 
In (A-64), r is the distance of the edge of the bearing to the center of the bearing (=radius for 
circular bearing).   Dimension r is typically equal to or greater than T୰, so that the shear strain due 
to rotation  is of the order of 0.01 and thus insignificant.   Accordingly, the effect of torsion only 
needs to be included in the calculation of the lateral displacement whereas the angle of rotation 
has insignificant effect on shear strain. 
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A-6 PROPOSED EQUATIONS FOR CALCULATING SHEAR STRAINS IN RUBBER 
BEARINGS 

 
A-6.1 Introduction 
 
The design of elastomeric bearings (consisting of several layers of rubber and steel shims) 
requires the calculation of rubber shear strains due to the combined effects of compression by 
load P, rotation of the top of the bearing with respect to its bottom by angle θ and lateral 
displacement of the top of the bearing with respect to its bottom by amount Δ.  These load, 
displacement and rotation include combinations of various effects (e.g., dead load and live load 
or static and cyclic components of rotation) and appropriate load factors.  A bearing is 
characterized by its geometry (rectangular, square, circular or circular with central hole), plan 
dimensions, the shape factor S (presumed to be the same for all rubber layers), individual rubber 
layer thickness t (presumed to be the same for all rubber layers) and its total rubber thickness T୰.  
The bonded rubber area is A.  When square, the plan dimensions are L by L.  When rectangular, 
the dimensions are L by B with B>L and the axis of rotation is along the long dimension B.  
When circular, the diameter is D.  When the bearing is circular hollow, the outside diameter is D୭ 
and the inner diameter is D୧.   The mechanical properties of rubber are the shear modulus G and 
the bulk modulus K.   
 
A-6.2 Shear Strain due to Compression 
 
The maximum shear strain due to compression should be calculated by: 
 

γc ൌ
P

AGS
 f1                                                                                                                                         ሺA െ 65ሻ 

 
The maximum shear strain due to compression occurs at the free surface of circular bearings.  
Factor f1is given in Table A-1. 
 
For square bearings, the maximum shear strain occurs at the middle of each side and at the free 
surface.  For rectangular bearings (B>L) the maximum shear strain occurs in the middle of the 
side of dimension B at the free surface.  Factor f1is given in Tables A-4 to A-7. 
 
For circular hollow bearings the maximum shear strain occurs at the inner free surface.  Factor 
f1is given in Table A-2. However, the shear strain should also be calculated for outer free surface 
for which factor f1is given in Table A-3. 
 
A-6.3 Shear Strain due to Rotation 
 
The maximum shear strain due to rotation should be calculated by the following equations. 
 

γr ൌ
L2θ

tTr
f2      for square and for rectangular bearings                                                               ሺA െ 66ሻ 
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For square bearings, the maximum shear strain occurs at the middle of each side and at the free 
surface.  For rectangular bearings (B>L) the maximum shear strain occurs in the middle of the 
side of dimension B at the free surface and factor f2is given in Tables A-11 to A-14. 
 

γr ൌ
D2θ

tTr
f2      for circular bearings                                                                                                  ሺA െ 67ሻ 

 
The maximum shear strain due to rotation occurs at the free surface of circular bearings and 
factor f2is given in Table A-8. 
 

γr ൌ
Do

2θ

tTr
f2      for circular hollow bearings                                                                                   ሺA െ 68ሻ 

 
For circular hollow bearings the maximum shear strain at the inner free surface should be 
calculated using factor f2 in Table A-10. The shear strain at the outer free surface should be 
calculated using factor f2is given in Table A-9. 
 
A-6.3 Shear Strain due to Lateral Deformation 
 
The shear strain due to lateral bearing deformation should be calculated by: 
 

γs ൌ
∆
Tr

                                                                                                                                                   ሺA െ 69ሻ 
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A-7 SUMMARY AND CONCLUSIONS 
 
This work concentrated on the derivation of simple, practical and accurate expressions for the 
prediction of the maximum shear strain in elastomeric bearings subjected to pure compression, 
pure rotation and pure shear.  The derived expressions were based on published theoretical 
results that utilized the approximate “pressure solution” procedure.  Since the theoretical 
solutions are approximate, the validity and accuracy of the results was investigated for selected 
cases of geometry and material properties using finite element analysis.  Moreover, finite 
element results were utilized in deriving expressions for the shear strain due to rotation for the 
case of circular hollow bearings since a theoretical solution was not available. 
 
Equations for predicting the maximum shear strain in circular, circular hollow and rectangular 
rubber bonded layers were cast in forms that are typically used in standards and specifications 
for design (e.g., 1999 AASHTO Guide Specifications and its 2010 revision) but multiplied by a 
factor that reflects the effects of type of loading, geometric shape, shape factor, material 
properties and location where the maximum value occurs.  Values of this factor have been 
tabulated for ease in use for design. 
 

Specifically, the maximum shear strain due to compression has been expressed as γc ൌ P

AGS
 f1  

where factor f1 has the value of unity in current design specifications.  This work shows that 
values of this factor may be substantially higher than unity depending on the existence of a 
central hole, for small values of the ratio of bulk to shear modulus, for large shape factors and for 
rectangular shapes. 
 

Moreover, the maximum shear strain due to rotation has been expressed as γr ൌ L2θ

tTr
f2 where 

factor f2 has the value equal to 0.5 in current design specifications.  This work shows that values 
of this factor may be substantially less than 0.5 for small values of the ratio of bulk to shear 
modulus and for large shape factors regardless of geometric shape. 
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

Determination of Service Loads, Displacements and Rotations for a Three-Span Bridge
with Skew 

The following Appendix illustrates the use of the American Association of State Highway and
Transportation Officials - LRFD Bridge Design Specifications, 4th Edition, 2007 (AASHTO LRFD 2007) in
the determination of service loads and rotations for bearings on a three-span continuous bridge with
skew.

Portions of AASHTO LRFD 2007 are included throughout this Appendix as direct text, figures and tables
and are credited by the actual Article numbers.  Furthermore, these sections are printed in normal,
non-italicized font.  

Commentary on the application of the AASHTO LRFD 2007 specifications, calculations and analyses as
they apply to the example problem are printed in italicized font.
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

Determination of Service Loads and Rotations for a Three-Span Bridge with Skew 

3.5.1 -  Permanent Loads - Dead Loads: DC, DW, and EV

Dead Load shall include the weight of all components of the structure, appurtenances and
utilities attached thereto, earth cover, wearing surface, future overlays, and planned
widenings.

Cross-sectional area and density of the concrete box beam used has been provided previously in the main
text of this example.  Weights for diaphragms and bridge rails have been assumed based upon typical
construction and are listed below.  

No wearing surface, signs, lighting, gantries or other attachments were used in calculations or analyses.

Concrete Box Beam
A = 72.74 ft2 ρ = 0.182 kip/ft3 W = (72.74 ft2)x(0.182 kip/ft3) = 13.24 kip/ft

Diaphragms
P = 134 kip (concentrated at supports)

Bridge Rail
B = (0.50 kip/ft)x(2 barriers) = 1.0 kip/ft

The figure below illustrates the results of the analysis for Dead Load (DC)
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

Application of Vehicular Live Loads

AASHTO LRFD Bridge Design Specification 2007, Article 3.6 defines five types of loadings under  "Live
Loads". These are: 

1. LL & PL - Gravity Live Load: Vehicular Live Load and Pedestrian Live Load
2. IM - Dynamic Load Allowance (often referred to as "Impact")
3. CE - Centrifugal Forces
4. BR - Braking Force
5. CT - Vehicular Collision Force

For this example only the following three loads (LL, IM, BR) are applicable.  

The following section describes the application of  these loads in the context of AASHTO LRFD.

LL - Vehicular Live Load

3.6.1.2.1 - Design Vehicular Live Load
Vehicular live loading on the roadways of bridges or incidental structures, designated HL-93,

shall consist of a combination of the:

- Design truck or design tandem, and
- Design lane load.

Except as modified in Art. 3.6.1.3.1, each design lane under consideration shall be occupied by
either the design truck or tandem, coincident with the lane load, where applicable.  The loads
shall be assumed to occupy 10.0 ft transversely within a design lane.

3.6.1.2.2 - Design Truck
The weights and spacings of axles and wheels for

the design truck shall be specified in Figure
3.6.2.2-1.  A dynamic load allowance shall be
considered as specified in Article 3.6.2.  

...the spacing between the two 32.0 kip axles
shall be varied between 14.0 ft and 30.0 ft to
produce extreme force effects.

3.6.1.2.3 - Design Tandem
The design tandem shall consist of a pair of 25.0 ft kip axles spaced 4.0 ft apart.  The transverse

spacing of wheels shall be taken as 6.0 ft.  A dynamic load allowance shall be considered as
specified in Article 3.6.2.
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

3.6.1.3 - Application of Design Vehicular Live Loads
Unless otherwise specified, the extreme force effect shall be taken as the larger of the

following:
- The effect of the design tandem combined with the effect of the design lane load, or

- The effect of one design truck with the variable axle spacing specified in Article
 3.6.1.2.2, combined with the effect of the design lane load, and

- For both negative moment between points of contraflexure under a uniform load 
on all spans, and reaction at interior piers only, 90 percent of the effect of two design
trucks spaced a minimum of 50.0 ft between thelead axle of one truck and the rear axle 
of the other truck, combined with 90 percent of the effect of the design lane load.  The
distance between the 32.0 kip axles of each truck shall be taken as 14.0 ft.

Axles that do not contribute to the extreme force effect under consideration shall be neglected.

Unless otherwise specified, the lengths of design lanes, or parts thereof, that contribute to the extreme
force effect under consideration, shall be loaded with the design lane load.

The loads described above are applied as static loads along the length of the structure and moved
incrementally after each analysis.  For multiple span bridges, the use of commercially available structural
analysis programs is probably the quickest means for application of vehicular live loads due to the
complexity and repetitiveness of analyses.  

Forces, or stresses, are calculated at each increment that the axle loads are placed.  Due to the
symmetry of the design tandem, only a single pass along the bridge is required to achieve extreme
effects from this load configuration.  

Analyses of the effects of the design truck, however, require multiple passes along the structure.
Analyses must be performed as the rear axles are varied between the minimum spacing of 14.0 ft and the
maximum of 30.0 ft.  Furthermore, for non-symmetric, multi-span bridges, the truck configurations should
be applied in both directions of travel, as extreme force effects may be dependent upon the direction
along a span of the steering axle with respect to the two rear axles.  For this example however, the
symmetry of the bridge captures extreme forces regardless of the direction or configuration of the
applied loads.  

The figure below illustrates the results of these analyses.  

As seen in the figure, the effects of the design truck, not the design tandem, governs the analyses.  The
effect of the design truck with the minimum axle grouping also governs the results.

(Note that the locations of the design truck to produce maximum rotations in the bearings does not
coincide with the locations that produce extreme reactions.)

For the reaction at the interior piers, the third condition of Article 3.6.1.3.1 will need to be compared with
the effects of a single design truck.
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

3.6.1.2.4 - Design Lane Load
The design lane load shall consist of a load of 0.64 klf (kip per linear foot) uniformly distributed in

the longitudinal direction.  Transversely, the design lane load shall be assumed to be uniformly
distributed over a 10.0 ft width.  The force effects from the design lane load shall not be subject
to a dynamic load allowance.

For all multiple span bridges, the omission of portions of the design lane load is important in achieving
extreme force effects.  Omission of the design lane load from one or more spans in a multiple span bridge
may not only increase force effects in some members but may also cause force reversal in others.  

The diagram below exhibits all possible lane load applications for the symmetric, 3-span bridge from the
example.  For this portion of the exercise only the reactions and rotations of the bearings are of concern.
The results tabulated below each bearing were calculated by hand and checked using STAAD.Pro 2003,
however, any structural analysis program may be used to duplicate these results.  These results are for a
single lane of traffic only and do not include either distribution or load factors.  It is interesting to note
that Load Case "Lane Load I", which is the placement of the design lane load across all spans, produces
none of the extreme reactions or rotations.
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

3.6.4 Braking Force: BR

The braking force shall be taken as the greater of:

- 25 percent of the axle weights of the design truck or design tandem or,
- 5 percent of the design truck plus lane load or 5 percent of the design tandem plus lane load

This braking force shall be placed in all design lanes which are considered to be loaded in
accordance with Article 3.6.1.1.1 and which are carrying traffic headed in the same direction.  These
forces shall be assumed to act horizontally at a distance of 6.0 ft above the roadway surface in
either longitudinal direction to cause extreme force effects.  All design lanes shall be
simultaneously loaded for bridges likely to become one-directional in the future.

The multiple presence factors specified in Article 3.6.1.1.2 shall apply.

Determine horizontal braking force:

(0.25)x(8 kip + 32 kip + 32 kip) = 18 kip
or
(0.05)x[(8 kip + 32 kip + 32 kip) + (320 ft)x(0.64 klf)] = 13.84 kip

In the computer model, the force will be applied 6.0 ft above the deck (as specified in Article 3.6.4) plus
one half the depth of the deck cross-section to account for rotation about the centroid of the cross
section.  The loads applied are a concentrated axial force of 18 kip and a concentrated moment of 

MBR = (18 kip)x[6.0 ft + (1/2)x(6.0 ft)] = 162.0 kip ft

These forces are applied incrementally along the structure, similar to the application of the design truck
and design tandem, to achieve extreme force effects.  The results of these analyses for a single lane of
traffic are shown in the figure below.

Extreme force effects occur when the braking loads are applied at the supports and are shown as +/-
depending upon the direction of the traffic flow.  

Dynamic Load Allowances (IM) are not applied to braking forces, however multiple presence factors shall
be applied.
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

Determination of Live Load Distribution Factor for Bearings

3.6.1.1.1 - Number of Design Lanes
Generally, the number of design lanes should be determined by taking the interger part of the

ratio w/12.0, where w is the clear roadway width in ft. between curbs and or barrier.  Possible future
changes in the physical or functional clear roadway width of the bridge should be considered.

The inclusion of shoulder widths and structural deck sidewalks in the determination of number of lanes
accounts for the possibility of future changes in function.

Wcs 43 ft⋅:= Out-to-out Distance of Cross Section

Wbr 1.5 ft⋅:= Width of Concrete Bridge Barrier

n round
Wcs 2 Wbr⋅−

12 ft⋅








:= n 3= Maximum Number of Design Lanes

3.6.1.3 - Application of Design Vehicular Live Loads
Both the design lanes and the 10.0-ft loaded width in each lane shall be positioned to produce

extreme force effects.  The design truck or tandem shall be positioned transversely such that the
center of any wheel load is not closer than:

- For the design of the deck overhang - 1.0 ft from the face of the curb or railing, 
and

- For the design of all other components - 2.0 ft from the edge of the design lane

3.6.1.1.2 - Multiple Presence of Live Load
Unless specified otherwise herein, the extreme live load force effect shall be

determined by considering each possible combination of number of loaded lanes multiplied by a
corresponding multiple presence factor to account for the probability of simultaneous lane
occupation by the full HL93 design live load.

Table 3.6.1.1.2-1: Multiple Presence Factors m 

Number of 
Loaded 
Lanes

Multiple 
Presence 
Factors m

1 1.20
2 1.00
3 0.85

>3 0.65
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

Calculation of Distribution Factors

Determine the MAXIMUM live load distribution factor for the bearings by positioning the axle loads as far
left in the design lanes in accordance with Article 3.6.1.3. 

Take moments about RR to determine MAXIMUM reaction on RL (assuming rigid body movement about the
torsional axis of the bridge, calculations are based upon the distance between bearings in the plane
perpendicular to the longitudinal axis).   Calculate reactions based upon the following:

3 lanes loaded, 
2 lanes loaded (left and center lanes), and 
1 lane loaded (left lane only) 

Apply the multiple presence factors from Table 3.6.1.1.2-1

3 Design Lanes Loaded

RL3 0.85
P

2






27.26 ft⋅ 21.26 ft⋅+ 15.26 ft⋅+ 9.26 ft⋅+ 3.26 ft⋅+ 2.74 ft⋅−

22.52 ft⋅







⋅








⋅= RL3 1.39 P⋅=

2 Design Lanes Loaded

RL2 1.00
P

2






27.26 ft⋅ 21.26 ft⋅+ 15.26 ft⋅+ 9.26 ft⋅+

22.52 ft⋅







⋅








⋅= RL2 1.62 P⋅=

1 Design Lane Loaded

RL1 1.20
P

2






27.26 ft⋅ 21.26 ft⋅+

22.52 ft⋅







⋅








⋅= RL1 1.29 P⋅=

 2 Design Lanes Loaded Governs with a Distribution Factor: 
 DFMAX/MIN = (1.62) x (LLMAX/MIN + IM + BR)lane
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

Determine the MINIMUM live load distribution factor for the bearings by positioning the axle loads as far
right in the design lane in accordance with Article 3.6.1.3 

Take moments about RR to determine MINIMUM reaction on RL (assuming rigid body movement about the
torsional axis of the bridge, calculations are based upon the distance between bearings in the plane
perpendicular to the longitudinal axis).   Calculate reactions based upon the following:

3 lanes loaded, 
2 lanes loaded (center and right lanes), and 
1 lane loaded (right lane only) 

Apply the multiple presence factors from Table 3.6.1.2-1

3 Design Lanes Loaded

RL3 0.85
P

2






25.26 ft⋅ 19.26 ft⋅+ 13.26 ft⋅+ 7.26 ft⋅+ 1.26 ft⋅+ 4.74 ft⋅−

22.52 ft⋅







⋅








⋅= RL3 1.16 P⋅=

2 Design Lanes Loaded

RL2 1.00
P

2






13.26 ft⋅ 7.26 ft⋅+ 1.26 ft⋅+ 4.74 ft⋅−

22.52 ft⋅







⋅








⋅= RL2 0.38 P⋅=

1 Design Lane Loaded

RL1 1.20
P

2






1.26 ft⋅ 4.74 ft⋅−

22.52 ft⋅







⋅








⋅= RL1 0.09− P⋅=

 1 Design Lane Loaded Governs with a Distribution Factor:  
 DFMIN'= (-0.09) x (LLMAX + IM + BR)lane

* DFMIN and DFMIN' should be compared to see which governs uplift for Vehicular Loading
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

3.6.2 Dynamic Load Allowance: IM
Unless otherwise permitted in Articles 3.6.2.2 and 3.6.2.3, the static effects of the design truck

or tandem, other than centrifugal and braking forces, shall be increased by the percentage
specified in Table 3.6.2.1-1 for dynamic load allowance.

The factor to be applied to the static load shall be taken as (1 + IM/100).

The dynamic load allowance shall not be applied to pedestrian loads or the design lane load.

Table 3.6.2.1-1 - Dynamic Load Allowance (IM)

COMPONENT IM
Deck Joints - All Limit States 75%
All Other Components

* Fatigue and Fracture Limit State 15%

* All Other Limit States 33%

The dynamic load allowance is applicable to the design of bearings.  For the Strength, Extreme Event and
Service Limit States the effects of the design truck or tandem shall be multiplied by a factor of :

(1 + 33/100) = 1.33

Determine maximum and minimum live load forces for the abutments and interior piers as per Articles
3.6.1.2.1 and 3.6.1.3, including the increase due to Dynamic Load Allowance.

Abutments:

Maximum Reaction Design Truck or Tandem: 63.69 kip
Maximum Reaction Design Lane Load: 29.15 kip
Maximum Reaction Braking Force: 2.00 kip

(LL + IM + BR)MAX = (1.33)x(63.69 kip) + (29.15 kip) + (2.00 kip) = 115.86 kip

Minimum Reaction Design Truck or Tandem: -7.23 kip
Minimum Reaction Design Lane Load: -4.92 kip
Minimum Reaction Braking Force: -2.00 kip

(LL + IM + BR)MIN = (1.33)x(-7.23 kip) + (-4.92 kip) + (-2.00 kip) = -16.54 kip

Extreme Rotation Design Truck or Tandem: +/- 0.000168 rad
Extreme Rotation Design Lane Load: +/- 0.000106 rad
Extreme Rotation Braking Force: +/- 0.000024 rad

(LL + IM + BR)MAX = (1.33)x(0.000168) + (0.000106) + (0.000024) = +/- 0.000353 rad
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Rotations for Bearings

Three-Span Bridge with Skew

Interior Piers:

Maximum Reaction Design Truck or Tandem: 71.1 kip
Maximum Reaction Design Lane Load: 83.33 kip
Maximum Reaction Braking Force: 2.50 kip

(LL + IM + BR)MAX = (1.33)x(71.1 kip) + (83.33 kip) + (2.50 kip) = 180.39 kip

Maximum Reaction Two (2) Design Trucks: 114.9 kip
Maximum Reaction Design Lane Load: 83.33 kip
Maximum Reaction Braking Force: 2.50 kip
GOVERNS (LL + IM + BR)MAX = (0.9)x[(1.33)x(114.9 kip) + (83.33 kip)] + 2.50 kip = 215.03 kip

Minimum Reaction Design Truck or Tandem: -8.73 kip
Minimum Reaction Design Lane Load: -5.16 kip
Minimum Reaction Braking Force: -2.50 kip

(LL + IM + BR)MIN = (1.33)x(-8.73 kip) + (-5.16 kip) + (-2.50 kip) = -19.27 kip

Extreme Rotation Design Truck or Tandem: +/- 0.000117 rad
Extreme Rotation Design Lane Load: +/- 0.000082 rad
Extreme Rotation Braking Force: +/- 0.000014 rad

(LL + IM + BR)MAX = (1.33)x(0.000117) + (0.000082) + (0.000014) = +/- 0.000252 rad

Determine Extreme Effects Due to Vehicular Loadings per Bearing using Calculated
Distribution Factors:

ABUTmax 1.62 115.86 kip⋅( )⋅:= ABUTmax 187.69 kip⋅=

ABUTmin 1.62 16.54− kip⋅( )⋅ 1.62 16.54− kip⋅( )⋅ 0.09−( ) 115.86 kip⋅( )⋅<if

0.09−( ) 115.86 kip⋅( )⋅ otherwise

:= ABUTmin 26.79− kip⋅=

ABUTrot 0.85( ) 3( )⋅ 0.000353( )⋅:= ABUTrot 0.0009=

INTmax 1.62 215.03 kip⋅( )⋅:= INTmax 348.35 kip⋅=

INTmin 1.62 19.27− kip⋅( )⋅ 1.62 19.27− kip⋅( )⋅ 0.09−( ) 212.53 kip⋅( )⋅<if

0.09−( ) 212.53 kip⋅( )⋅ otherwise

:= INTmin 31.22− kip⋅=

INTrot 0.85( ) 3( )⋅ 0.000252( )⋅:= INTrot 0.000643=
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Appendix B Service Loads, Displacements and 
Rotations for Bearings

Three-Span Bridge with Skew

3.8.1.1 - Wind Load: WL and WS

Pressures specified herein shall be assumed to be caused by a base design wind velocity, VB, of
100 mph.

Wind load shall be assumed to be uniformly distributed on the area exposed to the wind.  The
exposed area shall be the sum of all areas of all components, including floor system and railing, as seen in
elevation taken perpendicular to the assumed wind direction.  This direction shall be varied to determine
the extreme force effect in the structure or in its components.  Areas that do not contribute to the
extreme force effect underconsideration may be neglected in the analysis.

For bridges or parts of bridges more than 30.0 ft above low ground or water level, the design
wind velocity, VDZ, should be adjusted according to:

VDZ 2.5 V0⋅
V30

VB







⋅ ln

Z

Z0








⋅= (3.8.1.1-1)

where VDZ = design wind velocity at design elevation, Z (mph)

Table 3.8.1.1-1 - Values of V0 and Z0 for Various Upstream Surface Conditions

CONDITION
OPEN 

COUNTRY SUBURBAN CITY

V0 (mph) 8.20 10.90 12.00
Z0 (ft) 0.23 3.28 8.20

V30 may be established from:
- Fastest-mile-of-wind charts available in ASCE 7-88 for various recurrence intervals,
- Site-specific wind surveys, and
- In the absence of better criterion, the assumption that V30 = VB = 100 mph.

V0 8.2 mph⋅:= Friction velocity - Table 3.8.1.1-1: Open Country Conditions

Z0 0.23 ft⋅:= Friction length of upstream fetch - Table 3.8.1.1-1: Open Country Conditions

VB 100 mph⋅:= Base wind velocity at 30.0 ft. height, Article 3.8.1.1

V30 80 mph⋅:= Wind velocity at 30.0 ft above low ground or above design water level.
Taken from fastest-mile-of-wind charts:  ASCE 7-88 (for Western U.S.A.)

Z 35 ft⋅:= Height of structure above low ground/water

VDZ 2.5 V0⋅
V30

VB







⋅ ln

Z

Z0








⋅:= VDZ 82.41 mph⋅= (3.8.1.1-1) 

The top of the bridge rail is 35.0 ft above low ground, thus requiring the calculation of VDZ.  
"Open Country" condition was used for calculations as it produces the most conservative results for the
design wind velocity at elevation Z.
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Rotations for Bearings

Three-Span Bridge with Skew

3.8.1.2 Wind Pressure on Structures: WS

If justified by local conditions, a different base design wind velocity may be selected for load
combinations not involving wind on live load.  The direction of the wind shall be assumed to be
horizontal, unless otherwise specified in Art. 3.8.3.  In the absence of more precise data, design
wind pressure, in ksf, may be determined as:

  PD PB

VDZ

VB








2

⋅= PB

VDZ
2

10000
⋅= (3.8.1.2.1-1)

where PB = base wind pressure specified in Table 3.8.1.2.1-1 (ksf)

The total wind loading shall not be taken less than 0.30 klf in the plane of a windward chord and
0.15 klf in the plane of a leeward chord on truss and arch components, and not less than 0.30 klf  on beam
or girder spans.

Table 3.8.1.2.1-1 - Base Pressures, PB Corresponding to VB = 100 mph.

SUPERSTRUCTURE 
COMPONENT

WINDWARD LOAD 
(ksf)

LEEWARD LOAD    
(ksf)

Trusses, Columns, 
and Arches 0.050 0.025

Beams 0.050 NA
Large Flat Surfaces 0.040 NA

PB 0.05 ksf⋅:= Base wind pressures specified in Table 3.8.1.2.1-1

Htw 9 ft⋅ 0 in⋅+:= Total height of structure above bearing

PD PB

VDZ

VB








2

⋅:= PD 33.96
lb

ft
2

= (3.8.1.2.1-1) 

WS PD Htw⋅ PD Htw⋅ 0.3 klf⋅≥if

0.3 klf⋅ otherwise

:= WS 0.31 klf⋅=

The calculated distributed wind load on the structure is greater than the minimum load requirement.
Applying the horizontal load to the structure produces the following horizontal reactions at the
abutments and interior piers.
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Rotations for Bearings

Three-Span Bridge with Skew

Distribution of Abutment/Pier Reactions to Individual Bearings

Once reactions at the abutment and interior piers are determined, the distribution to each bearing must
be calculated.  Since the linear force produced by wind pressure on the structure is applied half the
height of the structure above the bearings, they will experience equal and opposite vertical effects due
to the out-of-plane force (see diagram below).  

By taking the sum of moments about R2, vertical reactions may be calculated.

(22.52ft) x R1v = (4.5ft) x WSRV R1v = R2v = +/- (0.20) x WSRV

Due to the rigidity of the structure in the transverse direction, the bearings are assumed to resist the
force equally.

R1h = R2h = +/- (0.5) x WSRV

The maximum reactions per bearing due to Wind Pressure on Structure (WS) are:

Abutments: Rv = 0.20 x (+/- 11.74 kip) = +/- 2.35 kip
Rh = 0.5 x (+/- 11.74 kip) = +/- 5.87 kip

Interior Piers: Rv = 0.20 x (+/- 37.87 kip) = +/- 7.57 kip
Rh = 0.5 x (+/- 37.87 kip) = +/- 18.94 kip
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Rotations for Bearings

Three-Span Bridge with Skew

3.8.1.3 - Wind Pressure on Vehicles: WL

When vehicles are present, the design wind pressure shall be applied to both structure and
vehicles.  Wind pressure on vehicles shall be represented by an interruptible, moving force of 0.10 kip
per linear foot acting normal to, and 6.0ft above, the roadway and shall be transmitted to the
structure.

Application of Wind Pressure on Vehicles (WL) shall be done in the same fashion as the design Lane Load
for vehicular loading (see previous section on Application of Live Load).  Any span, or combination of
spans, shall be loaded with the distributed load such that the combination contributes to the extreme
load event.  

As with the Wind Load on Structure (WS), the force may occur in any horizontal direction.  Application of
the wind force normal to the lanes of traffic (in either transverse direction) will produce the maximum
response of the bearings.

The diagram below exhibits all possible load combinations for the symmetric, 3-span bridge.  Load cases
WL II and WL III produce the maximum horizontal reactions for the abutment and interior pier,
respectively.
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Distribution of Abutment/Pier Reactions Due to WL to Individual Bearings

Once reactions at the abutment and interior piers are determined, the distribution to each bearing must
be calculated.  Since the application of the wind pressure on live load occurs at 6.0ft above the deck, as
per Article 3.8.1.3, the bearings will experience equal and opposite vertical effects due to the
out-of-plane force.  

By taking the sum of moments about R2, vertical reactions can be calculated.

(22.52 ft) x R1v=(12.0 ft) x WL R1v = R2v = +/- 0.533 x WL

Due to the rigidity of the structure in the transverse direction, the bearings are assumed to resist the
force equally.

R1h = R2h = +/- 0.5 x WL

The maximum reactions per bearing due to Wind Pressure on Live Load (WL) are:

Abutments: Rv = 0.533 x (+/- 4.55 kip) = +/- 2.43 kip
Rh = 0.5 x (+/- 4.55 kip) = +/- 2.28 kip

Interior Piers: Rv = 0.533 x (+/- 13.02 kip) = +/- 6.94 kip
Rh = 0.5 x (+/- 13.02 kip) = +/- 6.51 kip
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Rotations for Bearings

Three-Span Bridge with Skew

3.8.2 Vertical Wind Pressure

A vertical upward wind force of 0.020 ksf times the width of the deck, including parapets and
sidewalks, shall be considered to be a longitudinal line load.  This force shall be applied only for  the
Strength III and Service IV limit states which do not involve wind on live load, and only when the direction of
wind is taken to be perpendicular to the longitudinal axis of the bridge.  This lineal force shall be applied
at the windward quarter point of the deck width in conjunction with the horizontal wind loads specified in
Article 3.8.1.

width 43 ft⋅:= WV width 0.02 ksf⋅( )⋅:= WV 0.86 klf⋅=

Distribution of Abutment/Pier Reactions to Individual Bearings

Once reactions at the abutment and interior piers are determined, the distribution to each bearing must
be calculated.  Since the linear force produced by vertical wind pressure on the structure is applied
upwards at the windward quarter point of the deck the maximum uplift can be calculated  by taking the
sum of moments about R1 (see diagram below).  

(22.52ft) x R2v=(22.01 ft) x WVRV R2v = R1v = 0.98 x WVRV

The maximum reactions per bearing due to Vertical Wind Pressure on Structure (WV) are:

Abutments: Rv = 0.98 x (-32.56 kip) = -31.91 kip

Interior Piers: Rv = 0.98 x (-105.04 kip) = -102.94 kip
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Determination of Movements of Bearings Due to Service Loads

3.12.2 - Uniform Temperature
The design thermal movement associated with a uniform temperature change may be calculated

using Procedure A or Procedure B below. 

While either procedure is valid for the bridge cross-section provided, the temperature ranges associated
with Procedure B are regionally more specific and produce a slightly greater variation.  For this reason
Procedure B shall be utilized.

3.12.2.2 - Temperature Range for Procedure B
The temperature range shall be defined as the difference between the maximum design

temperature, TMaxDesign, and the minimum design temperature, TMinDesign.  For all concrete girder bridges
with concrete decks, TMaxDesign shall be determined from the contours of Figure 3.12.2.2-1 and TMinDesign shall
be determined from the contours of 3.12.2.2-2.

A review of the contour maps for the State of California reveals a maximum variation for regions across the
State with:  

TMaxDesign 115:= °F TMinDesign 30:= °F

3.12.2.3 - Design Thermal Movements 
The design thermal movement range, ∆T, shall depend upon the extreme bridge design

temperatures defined in Article 3.12.2.2, and be determined as:

∆T α L× TMaxDesign TMinDesign−( )×= 3.12.2.3 1−( )

α 6 10
6−

⋅:= Coefficient of Thermal Expansion per °F for Concrete

Labut 160 ft⋅:= Labut 1920 in⋅= Expansion Length for Abutment Bearings

Lpier 60 ft⋅:= Lpier 720 in⋅= Expansion Length for Interior Pier Bearings

∆abut α Labut× TMaxDesign TMinDesign−( )×:= ∆abut 0.98 in⋅= Say 1 inch

∆pier α Lpier× TMaxDesign TMinDesign−( )×:= ∆pier 0.37 in⋅= Say 3/8 inch
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Summary of Reactions, Rotations and Displacements 
per Bearing Due to Service Loads

Vert Max Vert Min Horz Max Horz Min Load Case Vert Max Vert Min Horz Max Horz Min
(kip) (kip) (kip) (kip) (kip) (kip) (kip) (kip)

336.50 336.50 - - Dead Load (DC) 936.50 936.50 - -
105.04 -11.14 - - Design Tandem (LL + IM) 107.67 -13.55 - -
137.23 -15.58 - - Design Truck (LL + IM) 247.56 -18.81 - -
47.22 -7.97 - - Design Lane Load (LL) 134.99 -8.36 - -
3.24 -3.24 - - Braking (BR) 4.05 -4.05 - -

187.69 -26.79 - - * HL93 (LL + IM + BR) 348.35 -31.22 - -
2.35 -2.35 5.87 -5.87 Wind Pressure on Structure (WS) 7.57 -7.57 18.94 -18.94
0.00 -31.91 - - Vertical Wind Pressure (WV) 0.00 -102.94 - -
2.43 -2.43 2.28 -2.28 Wind Pressure on Live Load (WL) 6.94 -6.94 6.51 -6.51

* HL93 loading for interior piers governed by 2 design trucks Art. 3.6.1.3: (DFMAX )[(0.9)[(1+IM)(Truck)+(Lane)]+BR]

REACTIONS (per bearing)
Abutment Interior Pier

Abutment Load Case Interior Pier
(radians) (radians)

0.00149 Dead Load (DC) 0.00006
0.000122 * Design Tandem (LL + IM) 0.000079
0.00057 * Design Truck (LL + IM) 0.000397
0.00027 ** Design Lane Load (LL) 0.000209

0.000061 *** Braking (BR) 0.000036
0.0009 HL93 (LL + IM + BR) 0.000643

- Wind Pressure on Structure (WS) -
- Vertical Wind Pressure (WV) -
- Wind Pressure on Live Load (WL) -

* (3 lanes) x (multiple presence factor 0.85) x (1+IM) x (Tandem/Truck)
** (3 lanes) x (multiple presence factor 0.85) x  (Lane)
*** (3 lanes) x (multiple presence factor 0.85) x (Braking)

ROTATIONS (per bearing)

Abutment Load Case Interior Pier
(inches) (inches)

1.0 Uniform Temperature (UT) 0.375

Displacements (per bearing)
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DATA AND ASSUMPTIONS 
 

1. Seismic excitation described by spectra of Figure 10-5.  
 
2. All criteria for single mode analysis apply. 

 
3. Two bearings at each abutment and two bearings at each pier location. Distance between pier 

bearings is 26 ft as per Figure 10-1. Distance between abutment bearings is 26 ft but to be 
checked so that uplift does not occur or is within bearing capacities. 

 
4. Weight on bearings for seismic analysis is DL only, that is per Table 10-4:  
                    Abutment bearing (each):  DL = 336.5 kip 
                    Pier bearing (each):  DL = 936.5 kip 

 
5. Seismic live load (portion of live load used as mass in dynamic analysis) is assumed zero. 

Otherwise, conditions considered based on the values of bearing loads, displacements and 
rotations in Table 10-4, shown below: 
 

 
Loads, Displacements 

and Rotations 

Abutment Bearings  
(per bearing) 

Pier Bearings  
(per bearing) 

Static 
Component 

Cyclic Component Static Component Cyclic Component 

Dead Load PD (kip) +336.5 NA +936.5 NA 
Live Load PL  

(kip) 
+37.7 
-5.3 

+150.0 
-21.5 

+73.4 
-6.2 

+275.0 
-25.0 

Displacement (in) 3.0 0 
 

1.0 0 
 

Rotation (rad) 0.007 0.001 0.005 0.001 

 +: compressive force, -: tensile force 
 

 
6. Seismic excitation is Design Earthquake (DE).   Maximum earthquake effects on isolator 

displacements are considered by multiplying the DE effects by factor 1.5.  The maximum 
earthquake effects on isolator axial seismic force are considered by multiplying the DE 
effects also by factor 1.5.  This factor need not be the same as the one for displacements.  
In this example, the factor is conservatively assumed, in the absence of any analysis, to be 
the same as the one for displacement, that is, 1.5. 

 
7. Substructure is rigid. Following calculation of effective properties of isolation system, the 

effect of substructure flexibility will be assessed. 
 
8. Bridge is critical. 
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SELECTION OF BEARING DIMENSIONS AND PROPERTIES 
 
The Triple FP bearing has a total of 16 parameters (12 geometric and 4 frictional parameters).  These 
are too many to select in a parametric or optimization study.  Moreover, for economy and reliable 
performance it is best to utilize standard bearing components and configurations which have been 
previously tried and tested.  Accordingly, it is best strategy to contact the manufacturer of Triple FP 
bearings and request proposals for bearing configurations that are most suitable for the application 
(trial designs) that are then evaluated by the Engineer. 
 
In this example we describe how a trial design is selected.  
 
Consider the Triple FP bearing geometric and frictional parameters shown in the schematic below.  
Frictional parameters1 , 2 , 3 and 4 represent the coefficient of friction at interfaces 1 to 4, 

respectively, under high speed conditions.  A typical design will have radii 1 4R R and 2 3R R .   Also, 

a typical design will have nominal displacement capacities 1 4d d and 2 3d d .  
 
 
 
 

 
 
Typical geometries of concave plates of FP bearings are listed in Table 4-1.  Given that applications in 
California would require large displacement capacity bearings, and based on experience gained in the 
examples of report “Seismic Isolation of Bridges” (2007a), concave plates of radius 1 4R R equal to 
88 or 120inch are appropriate.  Herein, we select the 88inch radius plate on the assumption that the 
120inch radius plate will likely result in insufficient restoring force capability when checked in the DE 
based on the stricter criteria of Equation 3-28. 
 
The preliminary diameter of the concave plates CD is selected to be 44inch (see Table 4-1).  
Calculations based on simplified procedures (to be presented next) show this size to be adequate.  The 
diameter may be adjusted to larger or smaller size based on the results of dynamic response history 
analysis.   
 

SD

RD  

CD  



Appendix C                                              Triple Friction Pendulum System Calculations 
                                                                                 Three-Span Bridge with Skew 

C-3 
 

The selection of the slider diameter depends on the desired frictional properties and on the gravity 
load on the bearings (see calculations below).  In this case, pier bearings carry much larger load that 
the abutment bearings so that they dominate in terms of their contribution to the total friction 
force.  In this example, and for economy, the pier and abutment bearings will be of the same geometry 
(although it is possible to have bearings with smaller size slider assemblies at the abutments).  We 
envision a characteristic strength for the isolation system (force at zero displacement) equal to about 
0.06 times the weight.  We also desire to have moderate to low bearing pressure at the sliding 
interfaces so that wear in large cumulative travel expected for bridge bearings is minimal. 
 
We select the diameter of the sliders to be  16SD inch  and  12RD inch  (see figure above) and 
utilize information in Section 4.6 to estimate the friction properties.  Note that this is a preliminary 
estimation valid for specific materials used for the sliding interface.  Following this preliminary 
design, the manufacturer of the bearings needs to be contacted to provide confirmation of the design 
and, likely, recommendations for modifications to result in more reliable and compact design.   
 
The slider height are selected to be  1 4 8h h inch and  2 3 6h h inch .  These heights are not 
final.  They may be modified when the manufacturer is contacted.  However, there is no need to 
repeat calculations as small changes in the height of the slider do not affect the behavior of the 
bearing.    
 
Furthermore, the radii of the slider are selected to be  2 3 16R R inch .  Another design with 

 2 3 12R R inch proved, upon drawing the bearing, to have an unacceptably small inner radius. 
 
Other considerations for the selection of the bearing dimensions in this example were: 
 

1) The service displacement,S , to be accommodated by sliding on the lower friction surfaces 

2 and 3.  An appropriate criterion to accomplish this is:   * *
2 3 1.05 Sd d . 

 
2) The displacement capacity of the bearing should be: 

      * * * *
1 2 3 4 0.25 1.5

DES Ed d d d .  That is, is should be larger than one 

quarter of the service displacement plus 1.5 times the DE displacement demand. 
 

3) The inner slider assembly should be squat to ensure stability.  An appropriate criterion is to 

satisfy the following condition


2 3 1.0
R

h h
D . 

 
4) The minimum thickness of the small concave plates should be at least 1inch.  That is,  

   1 4 2 3 2h h h h inch . 
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BEARING PROPERTIES 

Consider the Triple FP bearing of the following geometry. 
 

 
Geometric Properties 
 

 1 4 88R R inch ,  2 3 16R R inch ,  1 4 4h h inch ,  2 3 3h h inch  
     1 11eff 4 88 4 84effR R R h inch  

     2 22eff 3 16 3 13effR R R h inch  

 

   * * 1
1 4 1

1

8414 13.36
88

effRd d d x inch
R

  Actual displacement capacity 

   * * 2
2 3 2

2

132 1.63
16

effRd d d x inch
R

  Actual displacement capacity 

Note that the aspect ratio of the inner slider, height to diameter=(h2+h3)/DR=6/12=0.5, is small.  This 
indicates a highly stable bearing.  Uplift of the inner slider initiates when the lateral force F is 
related to the compressive load P by  2 3/2( )RF PD h h .  For this bearing, this would require 
F=0.5P which is impossible.  In general, the aspect ratio (h2+h3)/DR should be equal to or less than 
unity. 
 
Frictional Properties of Pier Bearings  
 
Bearing pressure at surfaces 1 and 4: p=936.5/(x82) = 4.66ksi 
Using equation (4-10),  
 
3-cycle friction0.122-0.01x4.66=0.075; adjust for high velocity (-0.015) 0.060 (lower bound 
friction) 

44” 

d1=d4=14” 

2” 
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1st-cycle friction1.2x0.060=0.072. 
 
Upper bound values of friction (using data on -factors of report MCEER 07-0012) 
 

Aging:                1.10   [Table 12-1: sealed, normal environment] 
Contamination:    1.05   [Table 12-2; also Section 6 of Report MCEER 07-0012] 
Travel:               1.20   [For travel of 2000m] 
 
max=1.10x1.05x1.20=1.386   [a=1; critical bridge] 
 
Note:  low temperature effects not considered 
 
Upper bound friction=0.072x1.3860.100 
 
Friction for surfaces 1 and 4 of pier bearings 
 
Lower bound   1 4 0.060  
Upper bound   1 4 0.100  

 
Bearing pressure at surfaces 2 and 3: p=936.5/(x62) = 8.28ksi 
Using equation (4-15),  
 
3-cycle friction0.122-0.01x8.28=0.039; adjust for high velocity-velocity not that large (-0.005) 
0.035 (lower bound friction) 
1st-cycle friction1.2x0.035=0.042. 
 
Upper bound friction0.042x1.386=0.058. 
 

Friction for surfaces 2 and 3 of pier bearings 
 
Lower bound   2 3 0.035  
Upper bound   2 3 0.058  

 
At this point is important to discuss the pressure values at the sliding interface of the higly loaded 
pier bearing.  The materials used in these bearings typically have high pressure capacity and have low 
wear rates (see Constantinou et al, 2007a, section 5.10).  Wear is an issue to consider when bearings 
are subject to large cumulative travel.  Based  on the results of Appendix B (page B-20), the pier 
bearing rotation under live load (conservative as it assumes pin supports) is 0.000643rad for the HL93 
load case.  For bearings located at about 48inch from the centroidal axis, the bearing movement is 
0.03in (or 0.8mm).  Note that each HL93 truck crossing corresponds to a double amplitude motion or 
0.06in.  (The reader may read section 5.5 of Constantinou et al (2007a) for calculations of cumulative 
travel).  Most likely the bearings will not allow the movement due to their frictional resistannce.  
Conservative is to assume that motion will occur and will accumulate over the life of the structure to a 
large value.  Considering 30 years of service at 10 crossings of full truck load per hour, results in a 
cumulative travel of 4000m.  Given that portion of the motion will be consumed in deformation of the 
structure, the origin of the minimum limit of the 1999 and 2010 AASHTO Guide Specifications for 
Seismic Isolation Design for a 1mile or 1600m movement is obtained.  Consider that the bearings need 
to be qualified for a cumulative travel of 2miles (a conservative estimate for the pier bearings).  This 
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motion, if it occurs, will be equally shared by sliding interfaces 2 and 3 of the bearing (see page C-4) 
because friction is less than for interfaces 1 and 4.  Therefore, the interface will have to be qualified 
for wear at pressure of not less than 8.28ksi and cumulative slow travel of 1mile.  Wear test data 
reported in Constantinou et al (2007a), section 5.10 for materials similar to the one consider here 
show a loss of thickness due to wear of about 20% of the initial thickness after travel of 2 miles 
under  pressure of 10ksi.  Therefore, the material should be qualified for the application at pressure 
of 8.28ksi and travel of 1mile.  Otherwise, a wear test needs to be specified as described in the 
characterization tests of the 1999 and 2010 AASHTO Guide Specifications for Seismic Isolation 
Design.  In general, wear under the expected cumulative slow travel over the lifetime of the structure 
should be 20% or less of the starting thickness based on tests of large specimens of FP bearings at 
the relevant or  larger pressure.  Calculations could also be performed when sufficient data exist on 
the wear rate of the material. 
 
Sliding interfaces 1 and 4 are not subject to movement under live load effects as friction is higher 
than for interfaces 2 and 3.  However, these interfaces are subject to high velocity motion under 
seismic conditions.  The bearings will have to be tested under realistic seismic conditions in the 
prototype test program (high speed motion of an appropriate number of cycles at the proper 
amplitude) to be qualified.  High speed motion induces significant heating effects that cause 
significant wear. 
 
Frictional Properties of Abutment Bearings  
 
Bearing pressure at surfaces 1 and 4: p=336.5/(x82) = 1.67ksi 
Using equation (4-15) (although the pressure is slightly below the lower bound limit of applicability of 
the equation, we still use the equation but exercise some conservatism in the adjustment of the value 
for high velocity) 
 
3-cycle friction0.122-0.01x1.67=0.105; adjust for high velocity (-0.015) 0.090 (lower bound friction) 
1st-cycle friction1.2x0.090=0.105 but adjust to 0.110 due to uncertainty (low pressure). 
 

Upper bound friction=0.110x1.3860.150 
 
Friction for surfaces 1 and 4 of abutment bearings 
 
Lower bound   1 4 0.090  
Upper bound   1 4 0.150  

 
Bearing pressure at surfaces 2 and 3: p=336.5/(x62) = 2.98ksi 
Using equation (4-15),  
 
3-cycle friction0.122-0.01x2.98=0.092; adjust for high velocity-velocity not that large (-0.005) 
0.087 (lower bound friction) 
1st-cycle friction1.2x0.087=0.104. 
 
Upper bound friction0.104x1.386=0.144. 
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Friction for surfaces 2 and 3 of abutment bearings 
 
Lower bound   2 3 0.087     
Upper bound   2 3 0.144  

 
Summary of Properties 

Property Abutment Bearing Pier Bearing Combined System 
1eff 4effR R  (inch) 84.0 84.0 84.0 

2eff 3effR R  (inch) 13.0 13.0 13.0 

* *
1 4d d  (inch) 13.36 13.36 13.36 

* *
2 3d d  (inch) 1.63 1.63 1.63 

 1 4 Lower Bound 0.090 0.060 0.068 

 2 3 Lower Bound 0.087 0.035 0.049 

   Lower Bound 0.090 0.056 0.065 

 1 4 Upper Bound 0.150 0.100 0.113 

 2 3 Upper Bound 0.144 0.058 0.081 

  Upper Bound 0.149 0.094 0.108 
 
Quantity  is the value of the force at zero displacement divided by the normal load as shown in the 

schematic below.  It is given by       2
1 1 2

1
( ) eff

eff

R
R

 

  
The frictional properties of the combined system were calculated as weighted average friction.  For 
example, 
 

 



1 _

4 336.5 0.090 4 936.5 0.060 0.068
4 336.5 4 936.5lower bound

x x x x
X x
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Note that the lower bound value of friction for the combined system (see table above) is 0.065.  This 
is an appropriate value when strong seismic excitation is considered so that displacement demands are 
reduced.  Higher or lower values of friction may be achieved, if desired, by use of other materials for 
the sliding interfaces (the manufacturer may be contacted to offer options), or the contact areas 
need to be increased (for higher friction) or decreased (for lower friction).   The latter case may be 
problematic in the designed paper as pressures are already large for some of the sliding interfaces. 
 
Force-Displacement Loops 
 
Force-displacement loops for the lower bound and the upper bound conditions of the combined system 
are shown below (based on the theory presented in Section 4.5).   The displacement capacity of the 
bearings in the lower bound condition and prior to initiation of stiffening is 27.2inch.  For upper bound 
conditions, the displacement at initiation of stiffening is 27.6inch. The displacement at initiation of 
stiffening is given by    ** *

1 2 122( ) 2effu R d (see Fenz et al 2008c) .The total displacement 

capacity is 30.0inch (equal to   * * * *
1 2 3 4d d d d ). 

 
Critical for displacement capacity is the abutment bearing which is subject to larger service 
(temperature related), seismic and torsional displacements.  The force-displacement relation of the 
abutment bearing is slightly different than that os the combined system due to differences in the 
friction values.  For the abutment bearing, the displacement for lower bound conditions at initiation of 
stiffening is        ** *

1 2 122( ) 2 2(0.090 0.087)13 2 13.36 26.8effu R d x inch .  
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0.3
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Displacement (in)
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gh
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UPPER BOUND COMBINED SYSTEM

 

 

27.6inch

30.0inch

 
EFFECT OF WIND LOADING 
 
Consider WS+WL and WV effects in the lower bound frictional conditions.  Per Table 10-3, the 
transverse wind load is: 
 
Abutment bearings (per bearing): 
 

WL+WS=2.3+5.9=8.2kip  
 

 =
WL+WS 8.2 0.027

Weight-WV 336.5-31.9
 

 
Breakway friction may conservatively be estimated to be larger than 2 _ /2lower bound for the 

abutment bearings, which is 0.087/2=0.044.  This is larger than 0.027, therefore the abutment 
bearings will not move in wind. 
 
Pier bearings (per bearing): 

WL+WS=6.5+18.9=25.4kip  
 

  =
WL+WS 6.5+18.9 25.4 0.030

Weight-WV 936.5-102.9 833.6
 

 
Breakway friction may conservatively be estimated to be larger than 2 _ /2lower bound for the pier 

bearings, which is 0.035/2=0.018.  Therefore, the pier bearings have potential to move in wind.  If a 
wind load test is to be performed, test one pier bearing under vertical load of 833.6kip (weight-
WV=936.5-102.9=833.6kip) and cyclic lateral load of 25.4kip amplitude.   Consider specification of 1Hz 
frequency for 1000 cycles.  
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ANALYSIS FOR DISPLACEMENT DEMAND (Lower Bound Analysis) 
 
Analysis is performed in the DE using the single mode method of analysis (Section 3.7). 
Neglect substructure flexibility (subject to check). 
Perform analysis using bilinear hysteretic model of isolation system in the lower bound condition:   
 

POST-ELASTIC 
STIFFNESS 

Kd 
Qd 

LATERAL
DISPLACEMENT 

LATERAL
FORCE

CHARACTERISTIC 
STRENGTH 

 
      Y YIELD DISPLACEMENT 
 
 

The parameters are  1/2d effK W R ,   0.065dQ W W and the yield displacement Y is taken 

as u*/2 (see figure on page C-6),      1 2 2( ) (0.068 0.049) 13 0.25effY R x inch  
 

1) Let the displacement be  12DD inch  
 

2) Effective stiffness (equation 3-6): 
 


      

1

5092 0.065 5092 57.89 /
2 2 84 12

d
eff d

D Deff

Q W W xK K kip in
D R D x

 

  4 336.5 4 936.6 5092W x x kip  
 

3) Effective period (equation 3-5): 
 

   
50922 2 3.00 sec

386.4 57.89eff
eff

WT
gK x

 

 
4) Effective damping (equations 3-7 and 3-8): 

 



  

 
   2 2 2

4 ( ) 4 0.065 5092 (12 0.25) 0.297
2 2 2 57.89 12

D
eff

D Deff eff

W D YE x x x
K D K D x x

 

 
5) Damping reduction factor (equation 3-3): 

 

        
   

0.30.3 0.297 1.706
0.05 0.05

effB  
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6) Spectral acceleration from tabulated values of response spectrum for 5% damping (from 
Caltrans ARS website).  Calculate the corresponding displacement. 
 

T (sec) SA (g) 

1.1000 0.6600 

1.2000 0.6060 

1.3000 0.5600 

1.4000 0.5210 

1.5000 0.4870 

1.6000 0.4570 

1.7000 0.4310 

1.8000 0.4070 

1.9000 0.3860 

2.0000 0.3670 

2.2000 0.3280 

2.4000 0.2960 

2.5000 0.2820 

2.6000 0.2690 

2.8000 0.2460 

3.0000 0.2270 

3.2000 0.2100 

3.4000 0.1950 

3.5000 0.1880 

3.6000 0.1820 

3.8000 0.1710 

4.0000 0.1600 

4.2000 0.1530 

4.4000 0.1470 

4.6000 0.1400 

4.8000 0.1350 

5.0000 0.1300 

 

 
0.227 0.133
1.706A

gS g , 
 

  
2 2

2 2
0.133 386.4 3 11.7

4 4
a eff

D
ST x xS inch  

 
Accept as close enough to the assumed value.  Therefore,  11.7DD inch . 
 
 

7) Simplified methods of analysis predict displacement demands that compare well with results 
of dynamic response history analysis provided the latter are based on selection and scaling of 
motions meeting the minimum acceptance criteria (see Section 10.4).  Dynamic analysis herein 
will be performed using the scaled motions described in Section 10.4 which exceed the 
minimum acceptance criteria by factor of about 1.2.  The displacement response should then 
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be amplified by more than 1.2 times.  Accordingly, we adjust our estimate of displacement in 
the DE to  11.7 1.30 15.2DD x inch  
Add component in orthogonal direction: 
 

  2 2(0.3 15.2) 15.2 15.9DD x inch  
 

8) Displacement in the Maximum Earthquake: 
 

  1.5 1.5 15.9 23.9M DD D x inch   Say 24inch.  Or 24
MCEE inch  . 

 
9) The trial bearing has displacement capacity prior to stiffening equal to 26.8inch (abutment 

bearing in lower bound condition), therefore sufficient unless torsion contributes significant 
additional displacement.  Torsion is generally accepted to be an additional 10% for the corner 
bearings provided that stiffening does not occur.  If  24MD inch , an additional 10% 
displacement will be within the displacement capacity of the bearings prior to stiffening.  It 
should be noted that only the abutment bearing may experience additional torsional 
displacement and only in the transverse direction.  The schematic below from free vibration 
analysis (with bearings modeled as linear springs) demonstrates how the bridge responds in 
torsion. 

 

 
 

 
 
However, the stiffening behavior shown in the figure of page C-7 will “arrest” torsion and 
practically eliminate it.  Accordingly, we disregard torsion for the pier bearings and will 
consider torsion effects on the abutments in the transverse direction by assuming some 
additional displacement and calculating the force transferred by the bearing in the 
transverse direction in case it enters the stiffening range. 
The selected bearing should be sufficient to accommodate the displacement demand (but 
subject to check following dynamic analysis). 
 

COMPARISON TO DYNAMIC ANALYSIS RESULTS: 
 
Dynamic analysis results (reported in Section 11) resulted in a displacement demand in the DE for the 
critical abutment bearing equal to 17.6inch (larger than the one resulting from simplified analysis). 
The displacement capacity of the bearing should 

be 0.25 1.5 0.25 3.0 1.5 17.6 27.2
DES ED x x inch       .  The capacity of the selected 

bearing is 30inch, thus sufficient.  The displacement at initiation of stiffening of the abutment 
bearings in the lower bound condition is 26.8inch.  Given the small difference between these two 
displacement limits, the abutment bearing will barely enter the stiffening range to have any effect.  
However, in the transverse direction the displacement demand is 1.5x17.6=26.4inch and therefore 
some stiffening will occur when torsion is considered.   

60ft 

160ft 
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ANALYSIS TO DETERMINE FORCE FOR SUBSTRUCTURE DESIGN (Upper Bound Analysis) 
 
Analysis is performed in the DE for the upper bound conditions and using the bilinear hysteretic model 
for which   0.108 and      1 2 2( ) (0.113 0.081) 13 0.42effY R x inch  

 
1) Let the displacement be  10DD inch  

 
2) Effective stiffness (equation 3-6): 

 


      
1

5092 0.108 5092 85.30 /
2 2 84 10

d
eff d

D Deff

Q W W xK K kip in
D R D x

 

  4 336.5 4 936.6 5092W x x kip  
 

3) Effective period (equation 3-5): 
 

   
50922 2 2.47 sec

386.4 85.30eff
eff

WT
gK x

 

 
4) Effective damping (equations 3-7 and 3-8): 

 



  

 
   2 2 2

4 ( ) 4 0.108 5092 (10 0.42) 0.395
2 2 2 85.30 10

D
eff

D Deff eff

W D YE x x x
K D K D x x

 

 
Limit damping to 0.3. 
 

5) Damping reduction factor (equation 3-3): 
 

        
   

0.30.3 0.3 1.711
0.05 0.05

effB  

 
6) Spectral acceleration from tabulated values of response spectrum for 5% damping (page C-11 

by interpolation).  Calculate the corresponding displacement. 
 

 
0.291 0.170
1.711A

gS g , 
 

  
2 2

2 2
0.170 386.4 2.47 10.2

4 4
a eff

D
ST x xS inch  

 
Accept as close enough to the assumed value of displacement.  Therefore,  0.170AS g . 
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CALCULATION OF BEARING AXIAL FORCES DUE TO EARTHQUAKE 
 
Lateral DE earthquake (100%)   
 

 
 
where W = 5092 kip 
 a = 0.133 (lower bound analysis) 

a = 0.170 (upper bound analysis) 
 

From equilibrium:  4xFx22.52=3.5xEQ   and 3.5xEQ 3.5F = × α × W
90.1 90.1

 

 
For lower bound analysis:  F =  26.3 kip 
For upper bound analysis:  F =  33.6 kip 
 
Vertical earthquake (100%) 
 
Consider the vertical earthquake to be described by the spectrum of Figure 10-5 multiplied by a 
factor of 0.7. A quick spectral analysis in the vertical direction was conducted by using a 3-span, 
continuous beam model for the bridge in which skew was neglected. The fundamental vertical period 
was 0.40 sec, leading to a peak spectral acceleration αS (5%)  of 1.09x0.7=0.76g g. Axial loads on 
bearings were determined by multi-mode spectral analysis in the vertical direction (utilizing at least 3 
vertical vibration modes): 
 
 For DE, abutment bearings:   178.0 kip 
 For DE, pier bearings:    560.5 kip 
 
Check Potential for Uplift in MCE (multiply DE loads by factor 1.5-this is conservative but 
appropriate to check uplift): 
 
Load combination: 
 0.9DL – (100% vertical EQ + 30% lateral EQ + 30% longitudinal EQ) 
 
Abutment bearings: 
 0.9 x 336.5 –1.5x(178.0 + 0.30 x 33.6) = 20.7 kip > 0  NO UPLIFT 
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Pier bearings: 
 0.9 x 936.5 –1.5x(560.5 + 0.30 x 33.6) =-13.0 kip 0   LIMITED UPLIFT POTENTIAL IN MCE 
 
Bearings need to be detailed to be capable of accommodating some small uplift of less than 1inch 
(standard detail for Triple FP bearings).  No need for special testing. 
   
Maximum compressive load due to earthquake lateral load 
 

a) Consider the upper bound case (lateral load largest) and the load combination, 30% lateral EQ 
+ 100% vertical EQ. 

 
For DE, pier bearings: 
 
    560.5 0.30 33.6 570.6

DEEP x kip  

For MCE, pier bearings: 
  
   1.5 1.5 570.6 855.9

DEMCE DEP P x kip  

 
b) Consider the lower bound case (DM largest) and the load combination, 30% lateral EQ + 100% 

vertical EQ. 
 
For DE, pier bearings: 
 
   560.5 0.30 26.3 568.4

DEEP x kip  

  
For MCE, pier bearings: 
 
   1.5 1.5 568.4 852.6

DEMCE DEP P x kip      

 
USE  575

DEEP kip ,  860
MCEEP kip

 
It should be noted that these loads do not occur at the maximum displacement (they are based on 
combination 100%vertical+30%lateral).  Nevertheless, they will be used for assessment of adequacy of 
the bearing plates by assuming the load to be acting at the maximum displacement.  This is done for 
simplicity and conservatism.  The Engineer may want to perform multiple checks in the DE and MCE 
for the various possibilities in the percentage assignment of vertical and lateral actions.  Also, in this 
analysis the factor used for calculating the bearing force in the MCE is 1.5, which is a conservative 
value.  A lower value may be justified but it would require some kind of rational analysis. 
 
(Note that the factor assumed for calculation of the MCE axial bearing load (assumed 1.5 in this 
example) could be be different for the two considered combination cases with the 100% vertical+30% 
lateral combination likely to have a larger value than the 30% vertical+ 100% lateral combination). 
 
COMPARISON TO DYNAMIC ANALYSIS RESULTS: 
 
Dynamic analysis results (reported in Section 11) resulted in additional axial load on the critical pier 
bearing in the controlling lower bound condition (largest displacement) equal to 45.7kip (the simplified 
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analysis gave 26.3kip).  The maximum compressive load in the DE and MCE are 
then   560.5 0.30 45.7 574.2

DEEP x kip ,   1.5(560.5 0.30 45.7) 861.3
MCEEP x kip  

Thus use of  575
DEEP kip ,  860

MCEEP kip is acceptable. Also, the upper bound duynamic analysis 

resulted in an additional axial force in the DE equal to 55.4kip (by comparison to 45.7kip in the lower 
bound analysis).  Again, the difference is too small to affect the results.   We use 

 575
DEEP kip and  860

MCEEP kip . 

 
Check for sufficient restoring force 
 
Check worst case scenario, upper bound conditions 
 
  dynamic 0.108 ,   quai-static 0.108/2 0.054  

 Using equation (3-28) with   0.054 , D=10.2inch and  

d

1eff

1eff

2RW W 2 84T = 2π  = 2π 2π 2π  = 4.14 sec
K × g  g 386.4× g

= =W
2R

x
 

   
     

1/4 1/4D 10.2T=4.14sec< 28 ×  = 28  ×  = 4.46 sec
g 386.4

0.05 0.05
μ 0.054

  

OK, sufficient restoring force (also meets the criterion that T = 4.14 sec < 6 sec) 
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EFFECT OF SUBSTRUCTURE FLEXIBILITY 
 
Consider a single pier in the direction perpendicular to its plane. This is the direction of least pier 
stiffness. Assessment on the basis of this stiffness is conservative. Refer to Table 10-1 and Figure 
10-4 for properties. 
 

 
Notes: 

4I = 4 × 8.8 = 35.2 ft  
'

F yK  = 4 × K  = 4 × 103,000 = 412,000 kip/ft  
' 6 6

R rzK  = 4 × K  = 4 × 7.12×10  = 28.48×10 kip-ft/rad  
KF and KR are determined considering two piers acting in unison. 
 
Per Section 3.7, single mode analysis, equation (3-36): 
 

 
 
 

-1

eff
F R c is

1 h × L 1 1K  =  +  +  + 
K K K K

 

 
where Kis is the effective stiffness of four pier isolators, and Kc is the column stiffness considering 
the rigid portions of the columns (see document Constantinou et al, 2007b, Seismic Isolation of 
Bridges, Appendix B for derivation). 
 

  
  

  

-13 2
2 2

c 2 2 2
l lK  = EI × l ×h  + l×h  +  + (h - L)×  + l×h
3 2

 

where E = 3600 ksi = 518,400 kip / ft2 
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  
  

  

-13 2
2 2

c
20 20K = 518400×35.2× 20 ×3 + 20×3 + + (28.5 - 24.75)× + 20×3 = 3633.8 kip/ft
3 2

     

 
Pier isolator effective stiffness (for 4 bearings): 
 
Use the stiffness determined in upper bound analysis to calculate the maximum effect of 
substructure flexibility. 
 

pW  weight on four pier bearings=4x936.5=3746kip 

  0.094 for pier bearings-see table on page C-6. 
 10.2DD inch  


is

p p

D1eff
  + = K  = kip/in = 681.8 kip/ft

W W 3746 0.094x3746+ =56.82
2R D 2x84 10.2

 

 
Total effective stiffness of pier/bearing system: 
 

   
     

-1 -1

eff,pier 6
F R c is

1 h × L 1 1 1 28.5 × 24.75 1 1K  =  +  +  +  =  +  +  + 
K K K K 412000 28.48×10 3633.8 681.8

 
 

 eff,pier  565.3 kip/ft = 47.1 kip/inK  =  

 
Abutment isolator effective stiffness (abutments assumed rigid): 
 
Use the stiffness determined in upper bound analysis. 
 

aW   weight on four abutment bearings=4x336.5=1346kip 

  0.149  for abutment bearings-see table on page C-6. 
 10.2DD inch  


eff,abut

a a

D1eff
  + = K  = kip/in = 332.0 kip/ftW W 1346 0.149x1346+ =27.67
2R D 2x84 10.2  
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For the entire bridge: 
 

   eff
eff,pier eff,abut

W 5092T  = 2π  = 2π  = 2.66 sec
47.10 + 26.67 × 386.4K  + K × g

 

 
By comparison, without the effect of substructure flexibility, Teff = 2.47 sec. Since the ratio 2.66 / 
2.47 = 1.077 < 1.10, the substructure flexibility effect can be neglected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keff,abut =27.67 k/in Keff,pier =47.10 k/in 
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BEARING END PLATE ADEQUACY (REQUIRED MINIMUM PLATE THICKNESS) 
 
Critical are pier bearings.   
 
Service Conditions Check 
 
 PD = 936.5 kip 
 PL = 348.4 kip (static plus cyclic components) 
 ∆s = assume such that the end of the inner slider is at position of least plate thickness 
 
Factored load: 
 Case Strength I       1.25 1.75 1.25 936.5 1.75 348.4 1780.3D LP P P x x kip  

 Case Strength IV   1.5 1.5 936.5 1404.8DP P x kip  
            Pu=1780.3kip 
Concrete bearing strength (equation 8-1) for ' 4000cf psi and confined conditions: 
 
 '1.7 1.7 0.65 4 4.42b c cf f x x ksi    
 
Diameter b1 of concrete area carrying load (equation 8-2): 
 

 1

4 4 1780.3
22.65

4.42
u

b

P x
b inch

f x 
    

 
Loading arm (equation 8-3).  
Dimension b is the slider diameter-see page C-4: 
 

 1 22.65 16
3.33

2 2

b b
r inch

 
    

Required moment strength Mu (equation 8-4 with correction factor CF per Figure 8-5 for 
b/b1=16/22.65=0.71): 
 

2 2 2 2
1 4.42 3.33 22.6 3.33

1 4.42 1 0.94
2 3 2 16 3

29.37 /

u b b

r b r x
M f f CF x x x

b

kip in in

                
      

   

Note that the above calculated moment is not solely resisted by the end concave plate.  The moment is 

resisted also by the inner concave plate (16inch diameter plate) so that the required thickness 

calculated below is a conservative estimate.   Required minimum thickness (equation 8-6): 
 

4 4 29.37
1.70

0.9 45
u

b y

M x
t inch

F x
  

 
Bearing plate is ductile iron ASTM A536, Gr. 65-45-12 with 45yF ksi  minimum.  

Selected concave plate has thickness of 2inch, thus adequate.  
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Seismic DE Conditions Check 
 
The seismic check of the critical pier bearing is performed for the DE conditions for which lateral 
displacement is equal to either (a) the longitudinal displacement which is equal to 0.5

DES E   or 

0.5x1+16.8=17.3inch (portion of service displacement of 1inch plus the DE displacement of the 
abutment bearing, calculated as 16.8inch in the dynamic analysis), or (b) the transverse displacement 
which is equal to 16.8inch plus some torsion effect.  We assume that the torsion effect will be an 
additional part of less than 10% for the abutment bearings and therefore an additional 
0.1x60ft/160ft=0.0375 for the pier bearings (see page C-12 for schematic with bridge dimensions).  
Therefore, the displacement should be less than 1.0375x16.8=17.4inch. 
 
Therefore, the check is performed for a factored load  
       1.25 0.5 1.25 936.5 0.5 348.4 575 1920

DEu D L EP P P P x x kip
 
and lateral displacement 

D=17.4inch.  The peak axial force and the peak lateral displacement do not occur at the same time so 
the check is conservative.  The bearing adequacy will be determined using the centrally loaded area 
approach (see Section 8.4) so that the lateral force is not needed. 
 
For the case of equal friction ( 1 4 and  2 3 -see Fenz et al, 2008c), the lateral displacement 
of 17.4inch is equally divided between the top and bottom sliding plates.  That is, a total of 8.7inch 
displacement will occur on interfaces 1 and 2 as shown in the schematic of the bearing on page C-4. 
Most of this displacement will occur on interface 1 with a small portion of interface 2.  The portion on 
interface 2 is given by   *

1 2 2/2 ( ) effu R (see Fenz et al, 2008c).  For the pier 

bearing,      *
1 2 2/2 ( ) (0.060 0.035)13 0.33effu R inch , which too small to have  any 

significance in the adequacy assessment and is neglected for simplicity. The bearing in the deformed 
position is illustrated below.  
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Concrete bearing strength (equation 8-1) for ' 4000cf psi and confined conditions: 
 
 '1.7 1.7 0.65 4 4.42b c cf f x x ksi    
 
Diameter b1 of concrete area carrying load (equation 8-2): 
 

 1

4 4 1920
23.5

4.42
u

b

P x
b inch

f x 
    

 
Check at single plate.  Dimension b is the slider diameter of16inch. Loading arm (equation 8-3):  
 

 1 23.5 16
3.75

2 2

b b
r inch

 
    

 
Required moment strength Mu (equation 8-4 with correction factor CF per Figure 8-5 for 
b/b1=16/23.5=0.68): 
 

2 2 2 2
1 4.42 3.75 23.5 3.75

1 4.42 1 0.87
2 3 2 16 3

35.5 /

u b b

r b r x
M f f CF x x x

b

kip in in

                
      

   

 
 

Required minimum thickness (equation 8-6): 
 

4 4 35.5
1.87

0.9 45
u

b y

M x
t inch

F x
  

 
Bearing plate is ductile iron ASTM A536, Gr. 65-45-12 with 45yF ksi  minimum.  

Selected concave plate has thickness of 2inch, thus adequate.   
 
Check at double plate.  Dimension b is the inner slider diameter of12inch. Loading arm (equation 8-3):  
 

 1 23.5 12
5.75

2 2

b b
r inch

 
    

 
Required moment strength Mu (equation 8-4 with correction factor CF per Figure 8-5 for 
b/b1=12/23.5=0.51): 
 

2 2 2 2
1 4.42 5.75 23.5 5.75

1 4.42 1 0.82
2 3 2 12 3

98.2 /

u b b

r b r x
M f f CF x x x

b

kip in in

                
      

   
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This moment is resisted by two plates of approximately the same thickness (2.0inch).  The moment 
should be distributed on the basis of the strength of the sections of each plate (proportional to 
thickness squared), thus each plate should resist 98.2/2=49.1kip-in/in. 
 

Required minimum thickness (equation 8-6): 
 

4 4 49.1
2.2

0.9 45
u

b y

M x
t inch

F x
  

 
Bearing plate is ductile iron ASTM A536, Gr. 65-45-12 with 45yF ksi  minimum.  

Selected concave plate has thickness of 2inch, thus NG.   
 
Increase plate thickness to 2.25inch or increase the inner plate thickness (from minimum of 
1inch to minimum of 1.4inch) or use higher strength concrete in the vicinity of the bearing.    
Note that by increasing the thickness of the inner plate to a minimum of 1.4inch, the plate thickness 
at the critical section is 2.4inch for the inner plate and 2.0inch for the outer plate.  The ratio 
ofstrengths of the two plates is (2.4/2)2=1.44.  The moment is then distributed as 
1.44Minner+Mouter=98.2kip-in//in.  Therefore, Mouter=40.2kip-in/in for which the required thickness is 
2.0inch (OK).   
 
Seismic MCE Conditions Check 
 
The seismic check of the critical pier bearing is performed for the MCE conditions for which lateral 
displacement is equal to either (a) the longitudinal displacement which is equal to 0.25 1.5

DES E   or 

0.25x1+1.5x16.8=25.5inch (portion of service displacement plus MCE displacement), or (b) the 
transverse displacement which is equal to 1.5x16.8=25.2inch plus some torsion effect.  Herein we 
follow the approach in DE so that the displacement should be less than 1.0375x25.2, say 26inch. 
 
Therefore, the check is performed for a factored load 

      1.25 0.25 1.25 936.5 0.25 348.4 860 2118
MCEu D L EP P P P x x kip  and lateral 

displacement D=26inch.  The peak axial force and the peak lateral displacement do not occur at the 
same time so the check is conservative.  The bearing adequacy will be determined using the centrally 
loaded area approach (see Section 8.4) so that the lateral force is not needed. 
 
For the case of equal friction ( 1 4 and  2 3 -see Fenz et al, 2008c), the lateral displacement 
of 26inch is equally divided between the top and bottom sliding plates.  That is, a total of 13inch 
displacement will occur on interfaces 1 and 2 as shown in the schematic of the bearing on page C-4. 
Most of this displacement will occur on interface 1 with a small portion of interface 2.  The portion on 
interface 2 is given by   *

1 2 2/2 ( ) effu R (see Fenz et al, 2008c).  For the pier 

bearing,      *
1 2 2/2 ( ) (0.060 0.035)13 0.33effu R inch , which too small to have  any 

significance in the adequacy assessment and is neglected for simplicity. The bearing in the deformed 
position is illustrated below.  
 
The plate adequacy checks follow the procedure used for the DE but with use of  values equal to 
unity and use of expected rather than minimum material strengths. 
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Concrete bearing strength (equation 8-1) for ' 4000cf psi and confined conditions (also c=1.0): 
 
 '1.7 1.7 1 4 6.8b c cf f x x ksi    
 
Diameter b1 of concrete area carrying load (equation 8-2): 
 

 1

4 4 2118
19.9

6.8
u

b

P x
b inch

f x 
    

Note that the available area has diameter of 20inch, therefore b1=19.9inch is just acceptable.  Had b1 
was larger than 20inch, the elliptical area approach of Section 8.4 should have been followed. 
 
Check at single plate.  Dimension b is the slider diameter of16inch. Loading arm (equation 8-3):  
 

 1 19.9 16
1.95

2 2

b b
r inch

 
    

 
Required moment strength Mu (equation 8-4 with correction factor CF per Figure 8-5 for 
b/b1=16/19.9=0.80): 
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2 2 2 2

1 6.8 1.95 19.9 1.95
1 6.8 1 0.95

2 3 2 16 3

14.3 /

u b b

r b r x
M f f CF x x x

b

kip in in

                
      

   

Required minimum thickness (equation 8-6): 
 

4 4 14.3
1.13

1 45
u

b y

M x
t inch

F x
  

 
Bearing plate is ductile iron ASTM A536, Gr. 65-45-12 with 45yF ksi minimum and expected 

strength.  
 
Selected concave plate has thickness of 2inch, thus adequate.   
 
Check at double plate.  Dimension b is the inner slider diameter of12inch. Loading arm (equation 8-3):  
 

 1 19.9 12
3.95

2 2

b b
r inch

 
    

 
Required moment strength Mu (equation 8-4 with correction factor CF per Figure 8-5 for 
b/b1=12/19.9=0.60): 
 

2 2 2 2
1 6.8 3.95 19.9 3.95

1 6.8 1 0.89
2 3 2 12 3

67.9 /

u b b

r b r x
M f f CF x x x

b

kip in in

                
      

   

 
 
This moment is resisted by two plates of approximately the same thickness (2.2inch).  The moment 
should be distributed on the basis of the strength of the sections of each plate (proportional to 
thickness squared), thus each plate should resist 67.9/2=34kip-in/in. 
 

Required minimum thickness (equation 8-6): 
 

4 4 34
1.74

1 45
u

b y

M x
t inch

F x
  

 
Bearing plate is ductile iron ASTM A536, Gr. 65-45-12 with 45yF ksi  minimum and expected 

strength.  
Selected concave plate has thickness of 2.3inch, thus acceptable.   
 
CONCLUSION: 
Required minimum bearing plate thickness is 2.25inch (for 4000psi concrete).
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DATA AND ASSUMPTIONS 
 

1. Seismic excitation described by spectra of Figure 10-5.  
 
2. All criteria for single mode analysis apply. 

 
3. Two bearings at each abutment and two bearings at each pier location. Distance between pier 

bearings is 26 ft as per Figure 10-1. Distance between abutment bearings is 26 ft but to be 
checked so that uplift does not occur or is within bearing capacities. 

 
4. Weight on bearings for seismic analysis is DL only, that is per Table 10-4:  
                    Abutment bearing (each):  DL = 336.5 kip 
                    Pier bearing (each):  DL = 936.5 kip 

 
5. Seismic live load (portion of live load used as mass in dynamic analysis) is assumed zero. 

Otherwise, conditions considered based on the values of bearing loads, displacements and 
rotations in Table 10-4 which is shown below: 
 

 
Loads, Displacements 

and Rotations 

Abutment Bearings  
(per bearing) 

Pier Bearings  
(per bearing) 

Static 
Component 

Cyclic Component Static Component Cyclic Component 

Dead Load PD (kip) +336.5 NA +936.5 NA 
Live Load PL  

(kip) 
+37.7 
-5.3 

+150.0 
-21.5 

+73.4 
-6.2 

+275.0 
-25.0 

Displacement (in) 3.0 0 
 

1.0 0 
 

Rotation (rad) 0.007 0.001 0.005 0.001 

 +: compressive force, -: tensile force 
 

 
6. Seismic excitation is Design Earthquake (DE).   Maximum earthquake effects on isolator 

displacements are considered by multiplying the DE effects by factor 1.5.  The maximum 
earthquake effects on isolator axial seismic force are considered by multiplying the DE 
effects also by factor 1.5.  This factor need not be the same as the one for displacements.  
In this example, the factor is conservatively assumed, in the absence of any analysis, to be 
the same as the one for displacement, that is, 1.5. 
 

7. Substructure is rigid. Following calculation of effective properties of isolation system, the 
effect of substructure flexibility will be assessed. 
 

8. Bridge is critical. 
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SELECTION OF BEARING DIMENSIONS AND PROPERTIES 
 
An ideal design for an isolation system for this bridge is to utilize lead-rubber bearings at the pier 
locations where the high gravity load will ensure proper behavior of the bearings.  Elastomeric 
bearings without a lead core would then be used at the abutment locations (see Constantinou et al, 
2007b for example of such a design).  However, an all lead-rubber bearing system is desirable because 
of the small number of bearings used, the simplicity in the use of a single type of bearing and the 
expected reduction in cost for the manufacture and testing of the bearings.   
 
Due to the low gravity load on the bearings (small mass to be seismically isolated), the softest (lowest 
shear modulus) rubber with reliable properties is used to shift the period to a large value while 
maintaining compact bearings.  Critical for lead lubber bearings is the stage of maximum displacement 
for which rubber strains and bearing instability need to be checked. Accordingly, all preliminary 
calculations for arriving at acceptable bearing dimensions are based on lower bound mechanical 
properties for the isolators.  
 
Based on information provided in Section 4.2, the lower bound yield strength of lead used is L = 1.45 
ksi. Also, we use rubber of shear modulus G = 60 psi (nominal value 65 psi, range 60 - 70 psi). This 
value represents the lower bound for the three-cycle shear modulus, G

3
. 

 
Let the bonded diameter of rubber bearings be DB, the total rubber thickness to be Tr and the lead 
core diameter to be DL. The characteristic strength of the isolation system is 
 
 28 4 4 8d L L L L L L pier L Labut LQ A A A A D          (units: kip and inch) 

 
Note that in the above expression, we accounted for the strength of the eight lead-rubber bearings 
and using L = 1.45ksi for the pier bearings and 0.75x1.45=1.09ksi for the abutment bearings (an 
assumption to account for the low confinement of lead in the abutment bearings due to the light 
gravity load they carry). 
 
The post-elastic stiffness of the isolation system is 
 

2 2

8 0.38
4

Br B
d

r r r

G DGA D
K

T T T

  
       


 
(units: kip/in and inch) 

 
In the above equation the contribution of 8 bearings was added without, for simplicity in the 
preliminary calculations, considering the minor effect of the lead core hole in the bearing center in 
calculating the bonded rubber area Ar. Also G = 60 psi was used. 
The effective stiffness is 

d
eff d

D

Q
K K

D
    

The effective period is 

2eff
eff

W
T

K g



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The effective damping is 

2

2 ( )d D
eff

eff D

Q D Y

K D





  

 
where D

D
 is the displacement in the design earthquake  (DE) and W =5092kip is the weight supported 

by the isolators. Note that in the expression for eff , the behavior is assumed to be bi-linear 

hysteretic so that the energy dissipated per cycle is E=4Q
d
(DD-Y), where Y=1inch (the yield 

displacement).  The assumed value of yield displacement is on the upper bound of likely values so that 
the calculation of isolator displacement is conservative. 
 
The bearing selection has been reduced to the selection of three geometric parameters: D, D

L
 and Tr. 

One may now perform calculations for each reasonable combination of these parameters to 
determine effT , eff , D

D
 and acceleration A (the acceleration is the base  shear normalized by weight 

in units of  g).  However, it is advisable to first select the lead core diameter so that the strength of 
the isolation system is some desirable portion of weight W. In general, the ratio Q

d
/W should be 

about 0.05 or larger in the lower bound analysis. For this bridge we start at Q
d
/W = 0.065 (same as 

the lower bound value for the combined system in the Triple FP calculations-see Appendix C, page C-
6).   
 
Using Q

d
 = 8D

L
 2 = 0.065W = 0.065x5092=331 kips results in D

L
 = 6.43 in. The diameter should now be 

rounded to a value based on information on bearings used in other projects. Herein we consider D
L
 = 

6.30 inch, 7.08 inch 7.86 inch, and 8.66 inch because of knowledge that bearings with these lead core 
dimensions have been manufactured and tested (note that 6.30 inch = 160 mm, 7.08 inch= 180 mm, 
7.86 inch= 200 mm, and 8.66 inch= 220 mm, so that the selected diameter is a rounded value in the 
metric system). 
 
The isolation system strength is as follows: for D

L
 = 6.30 inch, Q

d
 = 317.5 kip; for D

L
 = 7.08 inch, Q

d
 = 

401.0 kip; for D
L
 = 7.86 inch, Q

d
 = 494.2 kip; and for D

L
 = 8.66 inch, Q

d
 = 600.0 kip. The selection of 

dimensions D
B
 andTr should be based on the following rules (although deviation based on experience is 

permitted): 
 
 1) D

B
 should be in the range of 3 D

L
 to 6 D

L
 

 2)Tr should be about equal or larger than D
L 

 
Therefore, D

B
 should be in the range of 19 to 38inch for D

L
 = 6.30 inch, 22 to 43 for D

L
 = 7.08 inch, 

24 to 47inch for D
L
 = 7.86 inch, and 26 to 52inch for D

L
 = 8.66 inch.  Also, the total rubber 

thicknessTr should be about 6.30 inch or larger. Note that these rules intend to result in predictable 
behavior of lead-rubber bearings.   
 
The critical bearings will be the lead-rubber bearings at the pier locations which carry a gravity load 
of 936.5 kip each (by comparison, the abutment bearings will have identical construction and will 
undergo nearly the same-or slightly larger lateral displacement but carry only 336.5 kip each). We may 
now narrow the selection of diameter D

B
 to the range of 30 to 38 inch so that the pier bearing 

pressure under the load of 936.5 kip is in the range of about 0.8 to 1.3 ksi, which is reasonable.  
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At this point we recognize that if we attempt to design a bearing with about the same strength and 
post-elastic stiifness as the Triple Friction Pendulum design of Appendix C, the bearing displacement 
demand in the MCE will be large, say about 27inch, which will certainly make a 30inch diameter bearing 
unstable.  We opt, therefore, to start the design by selecting a large characteristic strength for the 
isolation system (large lead core diameter) so that displacement demands are reduced.  We will still 
attempt to design with as low post-elastic stiffness as possible.  A preliminary design is selected as 
follows: 
 

1) We start by considering a lead core diameter of 7.86inch (strength equal to 494.2kip).  As 
discussed earlier, the large diameter is desired to reduce displacement demand. 

2) We use a total rubber thickness Tr = 7.2inch.  The choice of this parameter is to control the 
shear strain in the rubber.  For example, the shear strain is 2.5 when the displacement is 
18inch.  Displacements of this order are expected for the MCE (note that for the Triple 
Friction Pendulum system, the displacement in the MCE for the pier bearings was about 
25inch). 

3) We use the following approximation to the DE spectrum of Figure 10-5, valid for periods in 
the range of 1.5 to 3.0sec: Sa = 0.71/T (units of g).  This is for simplicity in the simplified 
calculations. 

4) Perform calculations of displacement demand using the procedures of Section 3 for the DE.  
The MCE displacement is then calculated as 1.5 times the displacement in the DE.  To account 
for under-estimation of the displacement by the simplified method-see Sections 10 and 11 
and Appendix C), we further multiply by factor 1.3.  Also, apply the torsion factor 1.0375 (see 
Appendix C), so that 1.5 1.3 1.0375 2.1

MCE DE DEE E Ex x     .  Note
DEE DD  . 

5) The required individual rubber layer thickness is determined based on use of equation (5-41) 
for buckling of the bearing.  Other adequacy checks are needed but they will be performed 
later.  This critical check is used for the selection of the preliminary bearing.  Note that the 
check based on equation (5-41) is critical when displacement demands are large, as expected 
for this application. 

Equation (5-41) requires that 
'

1.1MCEcr

u

P

P
  

Equations (5-9), (5-12) and (5-16) define the critical load as 
4

' ( sin )
0.218

MCE

B
cr

r

GD
P

tT

 



  

Where 1 0.25 1.5
2cos ( )DES E

BD
    
  

Also, 1.25 0.25 1.5
MCE MCE DEu D D SL E D L EP P P P P P P     

 
Note the use of the simpler equation (5-9) instead of the accurate equation (5-11) for the buckling 
load.  This is done for simplicity in preliminary calculations. 
 
In these equations, 

DEE and 
DEEP are the pier isolator displacement and additional axial force in the 

DE.   Load  1.5
DE MCEE EP P  has been calculated in the Triple Friction Pendulum analysis (Appendix C) 

as 860kip but is now expected to be a little more since the isolation base shear is expected to be 

larger, say 942kip.  Accordingly, 1.25 936.5 0.25 348.4 942 2200uP x x kip     
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The required maximum value of rubber layer thickness, t, is  

4 ( sin )
0.218

1.1
B

u r

GD
t

P T

 



  


 

Note that in these equations, we use the minimum value of G=60psi for stiffness calculations and use 
the nominal value of G=65 psi for the safety check.  The table below summarizes the calculations for 
the trial case. 
 
Case Qd = 494.2kip (DL = 7.86 inch), Tr = 7.2 inch, W = 5092 kip, Pu=2200kip 

DB (inch) 30 32 34 36 38  

Kd (kip/in) 43.5 49.5 55.9 62.7 69.8 
2

0.38 B

d

r

D
K

T
  G=60psi 

Assumed DD 
(in.) 9.0 9.0 9.0 9.0 9.0 

DE displacement 

Keff (kip/in) 98.4 104.4 110.8 117.6 124.7 d

eff d

D

Q
K K

D
   

Teff (sec) 2.30 2.23 2.17 2.10 2.04 2
eff

eff

W
T

K g
  

eff (in.) 0.316 0.298 0.280 0.264 0.249 2

2 ( 1)d D
eff

eff D

Q D

K D





  

B 1.70 1.70 1.68 1.65 1.62 

0.3

1.7
0.05

effB
 

  
 

 

A (g) 0.18 0.19 0.19 0.20 0.21 
0.71

eff

A
BT

  

DD (inch) 9.0 9.0 9.0 9.0 9.0 
2

24

eff

D

AT
D


  

0.25
MCE

S E
    

(inch) 
19.0 19.0 19.0 19.0 19.0 

0.25inch+2.1DD 

Reduced area 
ratio 

 
0.251 0.291 0.327 0.361 0.391 

( sin ) 





1
0.25

2 cos MCE
S E

B
D

 
  


 
 
 

 

Required t for 
stability (inch) 0.165 0.248 0.355 0.493 0.663 

4

0.218
1.1

B

ru

GD
t

PT
  


 

( sin ) 




 

G=65psi 
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We select the bearing with the following parameters (note that total rubber thickness is slightly 
different than 7.2inch (for rounding).  The bearing should have sufficient extra capacity to 
accommodate larger displacements if needed. 
 
DB = 34 inch,   Tr = 7.18 in.,   26 layers @ t = 0.276 in. (7mm),   G

nominal
 = 65 psi,    DL = 7.86 in. 

 
BEARING PROPERTIES 
 
Nominal values 
 Shear modulus of rubber:  
      

       G
3
 = 65 psi, range: 60 to 70 psi 

                       G
1
 = 1.1 x 70 = 77 psi 

 
 Effective yield stress of lead:   
 

        
L3

 = 1.45 to 1.75 ksi 
                       

L1
 = 1.35 x 1.75 = 2.36 ksi 

 
Lower bound values 
 Shear modulus of rubber:    G = G

3
 = 60 psi 

 Effective yield stress of lead:  
L
 = 

L3 | min
 = 1.45 ksi 

Upper bound values 
 Aging -factor:   a = 1.1 for shear modulus of rubber 
 Travel -factor:   tr = 1.2 for effective yield stress of lead 
 Shear modulus of rubber:           G = G

1
 x a = 77 x 1.1 = 85 psi 

 Effective yield stress of lead:       
L
 =

L1 | max
 x tr = 2.36 x 1.2 = 2.83 ksi 

 
BEARING DESIGN 
Abutment and pier bearings 
 Bonded diameter:     34.0 in 
 Lead core diameter:    7.86 in 
 Cover:      0.75 in 
 Shims:       25 @ 0.1196 in (Gage 11) 
 Rubber:      26 layers @ 0.276 in, total Tr = 7.18 in 
Detailed drawings of the bearings are shown in Figure 13-1 and below. The steel used in the bearings is 
ASTM A572, Grade 50 with Fy = 50 ksi and expected yield strength Fye = RyFy = 55 ksi. 
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ANALYSIS FOR DISPLACEMENT DEMAND (Lower Bound Analysis) 
 
Analysis is performed in the DE using the single mode method of analysis (Section 3.7). 
Neglect substructure flexibility (subject to check). 
Perform analysis using bilinear hysteretic model of isolation system in the lower bound condition:   
 

POST-ELASTIC 
STIFFNESS 

Kd 
Qd 

LATERAL
DISPLACEMENT 

LATERAL
FORCE

CHARACTERISTIC 
STRENGTH 

 
      Y YIELD DISPLACEMENT 
 
 

Pier bearings 
 

G = 60 psi 
            

L
 = 1.45 ksi 

 2 20.06 34.75 7.86
7.52 /

4 7.18
r

d
r

GA
K kip in

T

  
  


 

NOTE:  Rubber bonded diameter is increased by the rubber cover thickness (0.75inch) to account for 
effect of cover on stiffness. 

27.86
1.45 70.4

4d L LQ A kip
 

     

Abutment bearings 

7.52 /r
d

r

G A
K kip in

T


  , same as the pier bearing 

27.86
0.75 0.75 1.45 52.8

4d L LQ A kip
 

      

NOTE: The characteristic strength of the abutment lead-rubber bearings was assumed to be 75% of 
the strength of the identical pier bearings because of the lower pressure the bearings are subjected 
to and the resulting uncertainty in properties.  The reduction is only used in the lower bound analysis 
because is conservative. 
 
The force-displacement relation of the isolation system (eight bearings) in the lower bound condition 
is as shown below. 
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FORCE

DISPLACEMENTY = 1in

Q d = 492.8 kip

Kd = 46.40 kip/in

 
 

1) Let the displacement be  9DD inch  
 

2) Effective stiffness (equation 3-6): 
 

    
492.860.16 114.9 /

9
d

eff d
D

QK K kip in
D

 

 
3) Effective period (equation 3-5): 

 

   
50922 2 2.13sec

386.4 114.9eff
eff

WT
gK x

 

 
4) Effective damping (equations 3-7 and 3-8): 

 


  

 
   2 2 2

4 ( ) 4 492.8 (9 1) 0.270
2 2 2 114.9 9

Dd
eff

D Deff eff

Q D YE x x
K D K D x x

 

 
5) Damping reduction factor (equation 3-3): 

 

        
   

0.30.3 0.270 1.659
0.05 0.05

effB  

 
6) Spectral acceleration from tabulated values of response spectrum for 5% damping (from 

Caltrans ARS website).  Calculate the corresponding displacement. 
 

T (sec) SA (g) 

1.1000 0.6600 

1.2000 0.6060 

1.3000 0.5600 

1.4000 0.5210 

1.5000 0.4870 

1.6000 0.4570 

60.16kip/in 
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1.7000 0.4310 

1.8000 0.4070 

1.9000 0.3860 

2.0000 0.3670 

2.2000 0.3280 

2.4000 0.2960 

2.5000 0.2820 

2.6000 0.2690 

2.8000 0.2460 

3.0000 0.2270 

3.2000 0.2100 

3.4000 0.1950 

3.5000 0.1880 

 
0.342 0.206
1.659A

gS g , 
 

  
2 2

2 2
0.206 386.4 2.13 9.1

4 4
a eff

D
ST x xS inch  

 
Accept as close enough to the assumed value.  Therefore,  9.1DD inch . 

 
7) Simplified methods of analysis predict displacement demands that compare well with results 

of dynamic response history analysis provided the latter are based on selection and scaling of 
motions meeting the minimum acceptance criteria (see Section 10.4).  Dynamic analysis herein 
will be performed using the scaled motions described in Section 10.4 which exceed the 
minimum acceptance criteria by factor of about 1.2.  The displacement response should then 
be amplified by more than 1.2 times.  Accordingly, we adjust our estimate of displacement in 
the DE to  9.1 1.30 11.8DD x inch  
Add component in orthogonal direction: 
 

  2 2(0.3 11.8) 11.8 12.3DD x inch  
 

8) Displacement in the Maximum Earthquake: 
 

  1.5 1.5 12.3 18.5M DD D x inch    
 

    1.0375 1.0375 18.5 19.2
MCETM MED D x inch  

 
Factor 1.0375 accounts for torsion in the pier bearings (it corresponds to torsion factor of 1.1 for 
the abutment bearings).  Increase the displacement demand by factor 1.3 to account for larger 
results of dynamic analysis. 
 

9) The displacement for assessment of 
adequacy of the pier bearings is 
 

      0.25 0.25 1.0 19.2 20.0
MCES ED x inch
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COMPARISON TO DYNAMIC ANALYSIS RESULTS: 
 
Dynamic analysis for the critical pier bearing (see Section 12) resulted in  13.1

MCEE inch .  

Enhancing for torsion in the transverse direction, we have 13.1x1.0375=13.59inch.  Thus,  
 

          0.25 0.25 1.5 0.25 0 1.5 13.59 20.4
MCE DES E S ED x x inch  

For the longitudinal direction (no torsion) 
          0.25 0.25 1.5 0.25 0 1.5 13.1 19.9

MCE DES E S ED x x inch  

The 20.4inch value is larger than the one of simplified analysis and is used in the bearing adequacy 
assessment. 
 
EFFECT OF WIND LOADING 
 
Considering WS+WL per Table 10-3, the transverse wind load is 
 

WL+WS=4(18.9+6.5)+4(5.9+2.3)=134.4kip  
The minimum strength of the isolation system under quasi-static conditions is likely about 1/4th of the 
dynamic value (refer to Section 8 of Constantinou et al, 2007a) or 4928/4=123.2kip.   Therefore, the 
bearings have potential to move in wind.  If a wind load test is to be performed, test one pier bearing 
under vertical load of 833.6kip (weight-WV=936.5-102.9=833.6kip) and cyclic lateral load of 25.4kip 
amplitude.   Consider specification of 1Hz frequency for 1000 cycles.  
 
VERTICAL STIFFNESS OF ISOLATORS 
 
The vertical stiffness is calculated for use in the dynamic analysis model of the isolated bridge.  
Herein we calculate one value of stiffness for use in both lower bound and upper bound analysis.  The 
value of the stiffness is based on the use of a value of the shear modulus equal to the nominal value 
under quasi-static conditions G=0.8x65=52psi 
 

11
899.9 1 4

14972 /
7.18 265.1 3 290

1 4
3

r
v

r c

kip in
x

A
K

T E K


          

   

 
22 1 265.16 6 0.052 29.15c x ksiE GS F x x    

K=290ksi, bulk modulus of rubber 

  2

2 234.75 7.86
899.9

4rA in
  

   

(Note the use of portion of the rubber cover in the calculation of stiffness) 
 
F=1 for a bearing without a hole that allows bulging (see Constantinou et al, 2007a). 

S=shape factor, 
859.4

29.15
34 0.276

r

B

A

D t x x
S

 
  , 

  2

2 234 7.86
859.4

4rA in
  

   

(Note use of actual rubber area for calculation of shape factor) 
USE 15000 /v kip inK 
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ANALYSIS TO DETERMINE FORCE FOR SUBSTRUCTURE DESIGN (Upper Bound Analysis) 
 
Analysis is performed in the DE for the upper bound properties. 
 
Pier bearings 
 
 G = 85 psi 

L = 2.83 ksi 

 2 20.085 34.75 7.86
10.65 /

4 7.18
r

d
r

GA
K kip in

T

  
  


 

27.86
2.83 137.3

4d L LQ A kip
 

     

 
Abutment bearings 

 
We assume the upper bound characteristic strength of the abutments bearings to be the same as that 
of the pier bearings despite the small load on the bearings.  This is done for conservatism.  Therefore, 
the abutments bearings have the same properties as the pier bearings. 
 
The force-displacement relation of the isolation system (eight bearings) in the upper bound condition 
is: 
 

FORCE

DISPLACEMENTY = 1in

Q d = 1098.4 kip

Kd = 65.76 kip/in

 
 

1) Let the displacement be  5.8DD inch  
 

2) Effective stiffness (equation 3-6): 
 

    
1098.485.20 274.6 /

5.8
d

eff d
D

QK K kip in
D

 

 
3) Effective period (equation 3-5): 

 

85.20kip/in 
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   
50922 2 1.38sec

386.4 274.6eff
eff

WT
gK x

 

 
4) Effective damping (equations 3-7 and 3-8): 

 


  

 
    2 2 2

4 ( ) 4 1098.4 (5.8 1) 0.363 0.3
2 2 2 274.6 5.8

Dd
eff

D Deff eff

Q D YE x x
K D K D x x

 

 
5) Damping reduction factor (equation 3-3): 

 

        
   

0.30.3 0.30 1.711
0.05 0.05

effB  

 
6) Spectral acceleration from tabulated values of response spectrum for 5% damping (from 

Caltrans ARS website).  Calculate the corresponding displacement. 
 

T (sec) SA (g) 

1.1000 0.6600 

1.2000 0.6060 

1.3000 0.5600 

1.4000 0.5210 

1.5000 0.4870 

1.6000 0.4570 

1.7000 0.4310 

1.8000 0.4070 

1.9000 0.3860 

2.0000 0.3670 

 

 
0.529 0.309
1.711A

gS g , 
 

  
2 2

2 2
0.309 386.4 1.38 5.8

4 4
a eff

D
ST x xS inch  

 
Accept as close enough to the assumed value.   
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CALCULATION OF BEARING AXIAL FORCES DUE TO EARTHQUAKE 
 
Lateral earthquake (100%) 

 
 
W = 5092 kip 
 = 0.21 (lower bound) 
 = 0.31 (upper bound) 
 

From equilibrium:  4xFx22.52=3.5xEQ   and 3.5xEQ 3.5F = × α × W
90.1 90.1

 

 
For lower bound analysis:  F =  41.5 kip 
For upper bound analysis:  F =  61.3 kip 
 
Vertical earthquake (100%) 
 
Consider the vertical earthquake to be described by the spectrum of Figure 10-5 multiplied by a 
factor of 0.7. A quick spectral analysis in the vertical direction was conducted by using a 3-span, 
continuous beam model for the bridge in which skew was neglected. The fundamental vertical period 
was 0.40 sec, leading to a peak spectral acceleration αS (5%)  of 1.09x0.7=0.76g g. Axial loads on 
bearings were determined by multi-mode spectral analysis in the vertical direction (utilizing at least 3 
vertical vibration modes): 
 
 For DE, abutment bearings:   178.0 kip 
 For DE, pier bearings:    560.5 kip 
 
Check Potential for Bearing Tension in MCE (multiply DE loads by factor 1.5): 
 
Load combination: 
 0.9DL – (100% vertical EQ + 30% lateral EQ + 30% longitudinal EQ) 
 
Abutment bearings: 
 0.9 x 336.5 –1.5x(178.0 + 0.30 x 61.3) = 8.3 kip > 0  NO BEARING TENSION 
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Pier bearings: 
 0.9 x 936.5 –1.5x(560.5 + 0.30 x 61.3) =-25.5 kip 0    
 
Check negative pressure: p=P/A=25500/899.9=28.3psi3G=3x60=180psi 

 2 2 234.75 7.86 / 4 899.9A in     

 
Negative pressure is much smaller than 3G so that rubber cavitation will not occur.  Tension is 
acceptable without need to test bearing in tension (see Constantinou et al, 2007a, Section 9.9). 
   
Maximum compressive load due to earthquake lateral load 
 

a) Consider the upper bound case (lateral load largest) and the load combination, 30% lateral EQ 
+ 100% vertical EQ. 

 
For DE, pier bearings: 
 
    560.5 0.30 61.3 578.9

DEEP x kip  

For MCE, pier bearings: 
  
   1.5 1.5 578.9 868.4

DEMCE DEP P x kip  

 
b) Consider the lower bound case (DM largest) and the load combination, 30% lateral EQ + 100% 

vertical EQ. 
 
For DE, pier bearings: 
 
   560.5 0.30 41.5 573.0

DEEP x kip  

  
For MCE, pier bearings: 
 
   1.5 1.5 573 859.5

DEMCE DEP P x kip      

 
USE  600

DEEP kip ,  900
MCEEP kip

 
 

c) Consider the upper bound case (lateral load largest) and the load combination, 100% lateral 
EQ + 30% vertical EQ. 

 
For DE, pier bearings: 
 
    0.3 560.5 61.3 229.5

DEEP x kip  

For MCE, pier bearings: 
  
   1.5 1.5 229.5 344.3

DEMCE DEP P x kip  
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d) Consider the lower bound case (DM largest) and the load combination, 30% vertical EQ + 100% 
transverse EQ. 

 
For DE, pier bearings: 
 
   0.3 560.5 41.5 209.7

DEEP x kip  

  
For MCE, pier bearings: 
 
   1.5 1.5 209.7 314.6

DEMCE DEP P x kip      

 
FOR COMBINATION 100%VERTICAL+30%LATERAL, USE  600

DEEP kip ,  900
MCEEP kip

 
 
FOR COMBINATION 30%VERTICAL+100%LATERAL, USE  250

DEEP kip ,  375
MCEEP kip

 
(Note that the factor assumed for calculation of the MCE axial bearing load (assumed 1.5 in this 
example) could be different for the two considered combination cases with the 100% vertical+30% 
lateral combination likely to have a larger value than the 30% vertical+ 100% lateral combination). 
 
COMPARISON TO DYNAMIC ANALYSIS RESULTS: 
 
Dynamic analysis results (reported in Section 12) resulted in additional axial load on the critical pier 
bearing in the controlling lower bound condition (largest displacement) equal to 64.3kip (the simplified 
analysis gave 41.5kip).  The maximum compressive load in the DE and MCE are then as follows: for the 
case of 100%vertical+30%lateral:   560.5 0.30 64.3 579.8

DEEP x kip , and for the case of 

30%vertical+100%lateral:   0.3 560.5 64.3 232.5
DEEP x kip  

Thus, use of the values calculated above and rounded are slightly on the conservative side and 
appropriate for use in the bearing adequacy assessment. 
 
Check for sufficient restoring force 
 
Check worst case scenario, upper bound conditions 
 

    dynamic
1098.4 0.216
5092

dQ
W

,   quai-static 0.216/2 0.108  

 Using equation (3-28) with   0.10 , D=6.0inch and 

d

W 5092T = 2π  2π  = 2.47 sec
K × g 85.2x386.4

=  


   

     

1/4 1/4D 6.0T=2.47sec 28 ×  = 28  ×  = 2.93 sec
g 386.4

0.05 0.05
μ 0.10

  

OK, sufficient restoring force. 
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EFFECT OF SUBSTRUCTURE FLEXIBILITY 
 
Consider a single pier in the direction perpendicular to its plane. This is the direction of least pier 
stiffness. Assessment on the basis of this stiffness is conservative. Refer to Table 10-1 and Figure 
10-4 for properties. 
 

 
Notes: 

4I = 4 × 8.8 = 35.2 ft  
'

F yK  = 4 × K  = 4 × 103,000 = 412,000 kip/ft  
' 6 6

R rzK  = 4 × K  = 4 × 7.12×10  = 28.48×10 kip-ft/rad  
KF and KR are determined considering two piers acting in unison. 
 
Per Section 3.7, single mode analysis, equation (3-36): 
 

 
 
 

-1

eff
F R c is

1 h × L 1 1K  =  +  +  + 
K K K K

 

 
where Kis is the effective stiffness of four pier isolators, and Kc is the column stiffness considering 
the rigid portions of the columns (see document Constantinou et al, 2007b, Seismic Isolation of 
Bridges, Appendix B for derivation). 
 

  
  

  

-13 2
2 2

c 2 2 2
l lK  = EI × l ×h  + l×h  +  + (h - L)×  + l×h
3 2

 

where E = 3600 ksi = 518,400 kip / ft2 
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  
  

  

-13 2
2 2

c
20 20K = 518400×35.2× 20 ×3 + 20×3 + + (28.5 - 24.75)× + 20×3 = 3633.8 kip/ft
3 2

     

Pier isolator effective stiffness (for 4 bearings): 
 
Use the stiffness determined in upper bound analysis to calculate the maximum effect of 
substructure flexibility. 
 

pW  weight on four pier bearings=4x936.5=3746kip 

The effective stiffness of all pier and abutment bearings was assumed to be the same in the 
upper bound analysis, so that each has effective stiffness 268.3/8=33.5kip/in. 
 

is eff 4KK  = kip/in = 1608 kip/ft=4x33.5=134  
 
Total effective stiffness of pier/bearing system: 
 

   
     

-1 -1

eff,pier 6
F R c is

1 h × L 1 1 1 28.5 × 24.75 1 1K  =  +  +  +  =  +  +  + 
K K K K 412000 28.48×10 3633.8 1608

 

 
 eff,pier  1081.9 kip/ft = 90.2 kip/inK  =  

 
Abutment isolator effective stiffness (abutments assumed rigid): 
 
Use the stiffness determined in upper bound analysis (same as that of pier bearings). 
 

aW   weight on four abutment bearings=4x336.5=1346kip 

eff,abutK  kip/in = 1608 kip/ft=134
  

 
For the entire bridge: 
 

   eff
eff,pier eff,abut

W 5092T  = 2π  = 2π  = 1.52 sec
134 + 90.2 × 386.4K  + K × g

 

 
By comparison, without the effect of substructure flexibility, Teff = 1.39 sec. Since the ratio 1.52 / 
1.39 = 1.094 < 1.10, the substructure flexibility effect can be neglected. 

Keff,abut =134 k/in Keff,pier =90.2 k/in 
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BEARING ADEQUACY ASSESSMENT  
 
DATA FOR SERVICE LOAD CHECKING (critical pier bearing) 
 

 936.5DP kip ,  73.4LstP kip ,  275.0LcyP kip    

  1.0Sst inch ,   0Scy ,       1.0S Sst Scy inch  

  0.005Sst rad ,   0.001Scy rad  

For service load conditions, G=0.8x65psi=52psi (quasi-static conditions, value is 80% of dynamic value). 
Steel plate and shim Fy=50ksi. 
 
Factored  load: 

1.75

1.25 936.5 1.75 73.4 1.75 1.75 275 2141.3

u D D L Lst L LcyP P P P

x x x x kip

     

    

For stability and shim adequacy 

1.25 936.5 1.75 (73.4 275) 1780.3u D D L LP P P kip          

Note that Strength IV case ( 1.5 1404.8u DP P kip  ) does not control. 

Rubber bonded area: 
 2 2

2
34 7.86

859.4
4

A in
  

   

Reduced rubber bonded area: 2sin
859.4 0.9626 827.3rA A x in

 

    

 
 

sin
0.9626rA

A

 

   

 
 

1 1 1
2cos 2cos 3.08276

34
S

BD
          

  
 

 

Equation (5-28): 1

1.25 926.5 1.75 73.4
1.3 1.3 3.5

827.3 0.052 29.15
D D L Lst

r

P P x X
f x

A GS x x

  
      OK 

Shape factor 
859.4

29.15
34 0.276B

A
S

D t x x 
  

 
Factor f1=1.3 from Table 5-1 for S=30 and K/G=290/0.052=55775000. 
 

Equation (5-24): 1

2141.3 1.3
2.22

827.3 0.052 29.15
u u
Cs

r

P x
f

A GS x x
      

Equation (5-25): 
1.75 1 0

0.14
7.18S

Sst Scyu
S

rT


   
  

 

Equation (5-26): 
2 2

2

( 1.75 ) 34 (0.005 1.75 0.001)
0.3 1.18

0.276 7.18s

Sst Scyu
r

r

L x
f x

tT x

 


 
   

 
Factor f2=0.3 from Table 5-8 for S=30 and K/G=290/0.052=55775000. 
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Equation (5-29): 2.22 0.14 1.18 3.54 6.0
s s s

u u u
C S r          OK 

 

Equation (5-11): 
4 40.052 34

0.218 0.218 0.691 5282.3
0.276 7.18

B
cr

r

GD x
P f kip

tT x
   

 

In equation (5-11), 
   

2

2 2

2

2

2

2

7.86 7.861 1 1 1
34

7.8611 34

34
0.691

L L

B B

L

B

D D
D D

D
D

f
   



   
   
       

With DL=lead core diameter and DB=rubber bonded diameter. 

Equation (5-27): 
' 5282.3 0.9626 5084.7
s

r
cr cr

A
P P kip

A
   

 

Equation (5-31): 
'

5084.7
2.86 2.0

( ) 1.25 936.5 1.75(73.4 275)
scr

D D L Lst Lcy

P

P P P x 
  

   
 OK 

 
Equation (5-30): 

3.0 0.276
0.036inch

827.3
1.08 50 2

1780.3
1.08 2

( )

s
r

y
D D L Lst Lcy

x

x x

t
t

A
F

P P P



 




 


   

   

AVAILABLE 0.1196inch OK 
 
 
DATA FOR DE CHECKING (critical pier bearing) 
 

 936.5DP kip ,   0.5(73.4 275) 174.2
DESLP kip  

 
for case of 100%vertical+30%lateral load 
 
for case of 30%vertical+100%lateral load 

 
Lateral displacement (dynamic analysis value-see 
Table 12-5 times torsion factor of 1.0375) 

 
     0.5 1.0 13.1 13.6

DES E x inch   Longitudinal displacement (dynamic analysis value-see 

                                                                        Table 12-5+portion of service displacement) 
    
   0.5 1.0 0.5S x inch   Non-seismic displacement concurrent with seismic DE displacement 
 
For DE conditions, G=65psi (nominal dynamic value). 
Steel plate and shim Fy=50ksi. 
 
Factored  load: 

 600
DEEP kip

 250
DEEP kip

     0 1.0374 13.1 13.6
DES E x inch
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1.25 936.5 174.2 600 1944.8
DE DEu D D SL E

x kip

P P P P

   

   
   

for case of 100%vertical+30%lateral load 

1.25 936.5 174.2 250 1594.8x kip           for case of 30%vertical+100%lateral load 

Reduced rubber bonded area: 2sin
859.4 0.5046 433.7rA A x in

 

    

 
 

sin
0.5046rA

A

 

   

 
 

1 10.5 13.6
2cos 2cos 2.31856

34
DES E

BD
            

  
 

Equation (5-32): 1

1594.8 1.3
2.52

433.7 0.065 29.15DE

u u
C

r

P x
f

A GS x x
      

Equation (5-33):  
13.6

1.89
7.18

DE

DE

S Eu
S

rT




  
  

 
Equation (5-34):  0.5 2.52 1.89 0.5 1.18 5.0 7.0

C SDE DE

u u u
rs x        

 
Equation (5-35):  

1.65 1.65 0.276
0.045

433.7
1.08 2 1.08 50 2

1944.8

s
r

y
u

t x
t inch

A
F x x

P

  
 

 
 AVAILABLE 0.1196inch OK  
Note that the check in equation (5-35) is made with largest factored load.    
 
 
DATA FOR MCE CHECKING (critical pier bearing) 
 

 936.5DP kip ,  0.5 174.2 87.1
MCESLP X kip  

 
for case of 100%vertical+30%lateral load 
 
for case of 30%vertical+100%lateral load 
 

     
 

Lateral displacement (dynamic analysis value-see Table 12-5 times torsion factor of 1.0375) 
        

     0.25 0.25 1.0 1.513.1 19.9
DES E x inch    

Longitudinal displacement (dynamic analysis value-seeTable 12-5+portion of service displacement) 
    
For MCE conditions, G=65psi (nominal dynamic value). 
Steel plate and shim Fye=55ksi. 
 
Factored  load: 

 900
MCEEP kip

 375
MCEEP kip

     0.25 0 1.0374 1.5 13.1 20.4
MCES E x x inch
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1.25 936.5 87.1 900 2157.7

MCE MCEu D D SL E

x kip

P P P P

   

   
   

for case of 100%vertical+30%lateral load 

1.25 936.5 87.1 375 1632.7x kip           for case of 30%vertical+100%lateral load 

Reduced rubber bonded area: 2sin
859.4 0.2848 244.8rA A x in

 

    

 
 

sin
0.2848rA

A

 

   

 
 

 

1 10.25 20.4
2cos 2cos 1.85459

34
MCES E

BD
            

  
 

Equation (5-36): 1

1632.7 1.3
4.58

244.8 0.065 29.15MCE

u u
C

r

P x
f

A GS x x
      

Equation (5-37):  
0.25 20.4

2.84
7.18

MCE

MCE

S Eu
S

rT


  
  

 
Equation (5-39):  0.25 4.58 2.84 0.25 1.18 7.72 9.0

C SMCE MCE

u u u
rs x        

  

Equation (5-11): 
4 40.065 34

0.218 0.218 0.691 6602.9
0.276 7.18

B
cr

r

GD x
P f kip

tT x
   

 
 

Equation (5-38): ' 6602.9 0.2848 1880.5
MCE

r
cr cr

A
P P x kip

A
  

 
 

Equation (5-41):  

'
1880.5

1.15 1.1
1632.7

MCEcr

u

P

P
  

 
OK 

Equation (5-18):  

,

1 ,

0.9 0.9 936.5 34 70.4 15.67
28.7

0.9 7.52 15.67 0.9 936.5
D d pier

cr
d pier D

P B Q hPB Qh x x x
D inch

K h P K P x x

 
   

  
 

 
Note that for conservative calculation of the critical displacement, B=bearing bonded 
diameter=34inch, h=bearing height including end plates=15.67inch (see Figure 12-11). 
 
Qd,pier=pier bearing characteristic strength in lower bound conditions (see Table 12-4 ) 
Kd,pier=pier bearing post-elastic stiffness in lower bound conditions (see Table 12-4 ). 
 

Equation (5-42): 
28.7

1.41 1.1
0.25 20.4

MCE

u
cr

S E

D
  

  
 

 OK 
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Equation (5-40):  
1.65 1.65 0.276

0.096
244.8

1.08 2 1.08 55 2
2157.7

s
r

ye
u

t x
t inch

A
F x x

P

  
 

 

 AVAILABLE 0.1196inch OK  
Note that check in equation (5-40) is made with largest factored load.    
 
BEARING END PLATE ADEQUACY  
 
Critical are pier bearings.  
 
MCE Conditions Check 
 
We perform the MCE check (due to large displacement and reduced effective area) for the least 
reduced area, and we use the largest factored load for the 100%vertical+30%lateral combination 
(instead of 30%vertical+100%lateral), use minimum strength Fy=50ksi (instead of expected strength 
Fye=55ksi) and use  factors of 0.65 (instead of 1.0) for the concrete strength and 0.9 (instead of 
1.0) for plate bending.  This allows for a quick check of adequacy of the end plate thickness.  If the 
available plate is inadequate, then the assessment process could be refined by checks of adequacy at 
the proper loads and displacements in service, DE and MCE conditions. 
 
Factored load (see calculations above for MCE):     2157.7uP kip  

Reduced Area(see calculations above for MCE):      
2244.8rA in        

 
Concrete bearing strength (equation 5-45) for ' 4000cf psi and confined conditions: 

 '1.7 1.7 0.65 4 4.42b c cf f x x ksi    
Using Reduced Area Procedure of Section 5.7.2. 
Dimension B=37.5inch (dimension of steel plate).  Dimension L=34inch (diameter of bonded rubber). 
 
Dimension of concrete area carrying load (equation 5-44):  
 

244.8
9.60

0.75 0.75 34
rA

b inch
L x

    

 
(Note the use of the reduced area as calculated excluding the lead area.  This was done for 
convenience and conservatism.  More appropriately the reduced area should include the area of lead 
for this calculation as lead carries load too).   
 
Dimension b1 of concrete area carrying load (equation 5-46): 
 

1

2157.7
19.14

0.75 0.75 34 4.42
u

b

P
b inch

Lf x x
     

 
Loading arm (equation 8-3).  
Dimension b is the slider diameter-see page C-4: 
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 1 19.14 9.60
4.77

2 2

b b
r inch

 
    

 
Required moment strength Mu (equation 5-48): 
 

2 24.42 4.77
50.3 /

2 2u b

r x
M f kip in in   

 
Required minimum thickness (equation 5-49): 
 

4 4 50.3
2.11

0.9 50
u

b y

M x
t inch

F x
  

 
Available thickness is 1.5inch (internal plate)+1.25inch (external plate)=2.75inch, thus adequate.   
 
Note that the effective thickness of the end plates is the sum of the two plates because the two 
plates are connected by bolts that ensure transfer of shear at the interface of the two plates. 
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Check for Tension in Anchor Bolts 
 
This check requires use of the Load-Moment Procedure of Section 5.7.3. 
 
Again we first perform conservative calculations using the largest factored Pu=2157.7kip and lateral 
displacement in the MCE  

 
 
 

Moment (equation 5-43): 
223.4 15.67 2157.7 20.4

23758.9
2 2 2 2

H uF h P u x x
M kip in

 
       

For a pier bearing in lower bound conditions, 70.4 7.52 20.4 223.8H d dF Q K u x kip      

 
 

 
 
 
Equation (5-52):  

3 23758.9
3 1.5 37.5 3 23.22

2 2157.7u

M
A B x inch

P
    

 
  
Equation (5-53):    

1

2 2 2157.7
4.96 6.8

23.22 37.5
u

b

P x
f ksi f ksi

AB x
       NO BOLT TENSION 

 
Note that fb is calculated for the MCE conditions ( '1.7 1.7 1.0 4 6.8b c cf f x x ksi   ). 
The value of fb for other conditions is calculated for =0.65, so that fb=4.42ksi.  Even under such 
conditions (and using the MCE forces and displacements), there is minor bolt tension (stress 4.96ksi 

    0.25 20.4
MCES Eu inch
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just more that fb=4.42ksi).   There is no need for special detail for anchors to resist tension.  Use 
standard connection detail with shear lug, anchor bolt to connect to the bearing and anchor bolt to 
connect shear lug to concrete. 
 
Check for Adequate Thickness of External Plate 
Based on conservative calculations above for MCE conditions.  
 
 

 
Moment at critical section of external plate:  
 

 
Required plate thickness: 
 

4 4 7.6
0.82

0.9 50b y

M x
t inch

F x
  

 
AVAILABLE THICKNESS IS 1.25INCH, THUS ADEQUATE. 
 
An example of a lead-rubber bearing installation details with shear lugs and anchor bolts is shown 
below.  This bearing has overall dimensions very close to the bearing of the bridge example. 
 
 

f1=4.96ksi 

r=(B-L)/2=(37.5-34)/2=1.75” 

 

t=1.25” 

CRITICAL SECTION 

2 2

1

4.96 1.75
7.6 /

2 2

r x
M f kip in in   
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DATA AND ASSUMPTIONS 
 

1. Seismic excitation described by spectra of Figure 10-5.  
 
2. All criteria for single mode analysis apply. 

 
3. Two bearings at each abutment and two bearings at each pier location. Distance between pier 

bearings is 26 ft as per Figure 10-1. Distance between abutment bearings is 26 ft but to be 
checked so that uplift does not occur or is within bearing capacities. 

 
4. Weight on bearings for seismic analysis is DL only, that is per Table 10-4:  
                    Abutment bearing (each):  DL = 336.5 kip 
                    Pier bearing (each):  DL = 936.5 kip 

 
5. Seismic live load (portion of live load used as mass in dynamic analysis) is assumed zero. 

Otherwise, conditions considered based on the values of bearing loads, displacements and 
rotations in Table 10-4 which is shown below: 
 

 
Loads, Displacements 

and Rotations 

Abutment Bearings  
(per bearing) 

Pier Bearings  
(per bearing) 

Static 
Component 

Cyclic Component Static Component Cyclic Component 

Dead Load PD (kip) +336.5 NA +936.5 NA 
Live Load PL  

(kip) 
+37.7 
-5.3 

+150.0 
-21.5 

+73.4 
-6.2 

+275.0 
-25.0 

Displacement (in) 3.0 0 
 

1.0 0 
 

Rotation (rad) 0.007 0.001 0.005 0.001 

 +: compressive force, -: tensile force 
 

 
6. Seismic excitation is Design Earthquake (DE).   Maximum earthquake effects on isolator 

displacements are considered by multiplying the DE effects by factor 1.5.  The maximum 
earthquake effects on isolator axial seismic force are considered by multiplying the DE 
effects also by factor 1.5.  This factor need not be the same as the one for displacements.  
In this example, the factor is conservatively assumed, in the absence of any analysis, to be 
the same as the one for displacement, that is, 1.5. 

 
7. Substructure is rigid. Following calculation of effective properties of isolation system, the 

effect of substructure flexibility will be assessed. 
 
8. Bridge is critical. 
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SELECTION OF BEARING DIMENSIONS AND PROPERTIES 
 
The single FP bearing has two important (effective radius and friction coefficient) so that is simple to 
perform a parametric study and arrive at a trial design.  A section of single FP bearing is shown below.  
The bearing may be placed as shown or, preferably, with the stainless steel surface facing down (see 
next figure). 

 
The effective radius is the distance between the center of curvature of the concave surface and the 
pivot point of the slider as shown below for the typical case where the pivot point is outside the 
boundary of the spherical surface. 
 

 
For the case shown above (which is typical) the effective radius is eR R h  .  (For the less common 
where the pivot point is inside the boundary of the spherical surface the effective radius equals the 
radius R minus the distance h).  Also, for the case shown above the actual displacement capacity of 

Center of 
Curvature 

Pivot 
Point 

DC 

DS       R 
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the bearing is given by (see Section 4.4) * eR R h
d d

R R
d


  where d = (DC-DS)/2 is the nominal 

displacement capacity (see Fenz and Constantinou, 2008c).  In general, height h is small by comparison 
to the radius so that eR R and *d d .  Accordingly, this difference is ignored or approximately 
considered in preliminary calculations.  
 
Typical geometries of concave plates of FP bearings are listed in Table 4-2.  Given that applications in 
California would require large displacement capacity bearings, concave plates of radius equal to 88, 
120, 156 or 238inch are considered.  Preliminary calculations will be performed on these four cases 
and the trial design will be selected on the basis of the calculated displacement demand and shear 
force, provided that the design has sufficient restoring force capability when checked in the DE 
based on the stricter criteria of Equation 3-28. 
 
Furthermore, we select dimension DS (diameter of slider) to be 16inch (which is the same as the 
diameter of the outer slider of the Triple FP bearing presented in Appendix C.  All 8 bearings will be 
of the same geometry so that the analysis of Appendix C for the friction values of surfaces 1 and 4 
applies for the single FP bearing.  Accordingly, the values of friction coefficient will be (see Appendix 
C) as follows.  Note that this exercise may be repeated for other diameters in order to achieve either 
higher or lower friction.  However, other values of friction may be obtained by use of different 
materials than the one for which equation (4-15) is based.  The final value of the diameter to 
accomplish particular friction values will have to be selected by the manufacturer on the basis of 
experience and testing of similar bearings. 
 
Pier bearings (load 936.5kip)  

 
Lower bound = 0.060  
Upper bound = 0.100 

 
Abutment bearings (load 336.5kip)  

 
Lower bound = 0.090  
Upper bound = 0.150 
 

Combined system (weighted average friction) 
  

Lower bound = 0.068  
Upper bound = 0.113 

 
Simplified analysis is performed by considering the substructure to be rigid so that the isolated 
structure is represented as a SDOF system.  Equations (3-38) and (3-39) will be used for calculating 
the effective period and effective damping of the system.  These equations are presented below in 
terms of effective radius Re, friction coefficient   and displacement DD.   
 

 
 



12eff

eD

T g g
D R
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

 

 
 
 
  
 

2
eff

D

e

D
R

 

Calculations are tabulated below for upper and lower bound friction values.  Note that the effective 
radius is approximated as a round value larger than the actual R.  For the case of the upper bound 
friction values, where displacement is less, the re-centering capability of the isolation system is 
checked on the basis of equation (3-28) but with  being the quasi-static value of friction or half of 
the dynamic value: 
 

 


 
 
 

1/4
De D

T=2 < 28 ×  
g

R 0.05
g μ

  

Furthermore, for simplicity in the simplified calculations the spectral acceleration of the 5% DE 
spectrum is approximated by the following equation. 
 

 aS = 0.71g
T  The analysis requires an iterative process of assuming a displacement and then performing 

calculations.  Details will be demonstrated later in the appendix. 
 
Lower Bound Case = 0.068 (value of eff limited to 0.300), DE analysis 
R (inch) Re (inch) T (sec) Teff (sec) eff B (eq. 3-3) A (g) DD (inch) 

88 90 3.0 2.41 0.235 1.591 0.185 10.5 
120 125 3.6 2.68 0.278 1.673 0.158 11.1 
156 160 4.0 2.93 0.300 1.711 0.142 11.9 
238 245 5.0 3.35 0.300 1.711 0.124 13.6 

 
Upper Bound Case = 0.113 (value of eff limited to 0.300), DE analysis 
R (inch) Re (inch) T (sec) Teff (sec) eff B (eq. 3-3) A (g) DD (inch) 

88 90 3.0 2.03 0.300 1.711 0.202 8.3 
120 125 3.6 2.23 0.300 1.711 0.186 9.0 
156 160 4.0 2.35 0.300 1.711 0.176 9.5 
238 245 5.0 2.62 0.300 1.711 0.158 10.6 

 
A quick check of equation (3-28) for the case of R=238inch in the upper bound case, results in  

 
         

1/4 1/4
De D 10.6T=2 28 ×  =28 ×
g 386

R 0.05 0.05=5.0sec    4.50 sec
g μ 0.113/2

   

UNACCEPTABLE 
Repeating for the case of R=156inch,  


         

1/4 1/4
De D 9.5T=2 28 ×  =28 ×
g 386

R 0.05 0.05=4.0sec    4.26sec
g μ 0.113/2

 

The system has sufficient restoring force.  Therefore, all systems other than the one with R=238inch 
are acceptable.  Even that system may be accepted by the Engineer but permanent displacements 
should then be expected. 
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On the basis of these results, the system with R=156inch is preferable as it results in the least shear 
force while displacements are about the same for all systems.  Note that this system has effective 
radius about equal to 160inch and weighted average friction coefficient of 0.068 in the lower bound 
and 0.113 in the upper bound condition.  Effectively is the same as the Triple FP system of Appendix C 
(effective radius 168inch and same friction when sliding occurs on the two main sliding surfaces).  The 
main difference in behavior between the two systems is in the stiffening behavior of the Triple FP 
system at large displacements which does not exist in the single FP system, which rather comes to an 
abrupt stop with very high stiffness.    Also, the Triple FP system has a smoother unloading loop but 
this typically does not offer any benefits in a bridge application like the one considered in this 
example. 
 

The displacement capacity of the bearings should be equal to 0.25 1.5
DES ED     , where S  is 

the service displacement (=3.0inch for the abutment bearings) and 
DEE  is the displacement in the 

DE.  Critical are the abutment bearings where both the seismic (accounting for pier flexibility 
effects) and the service displacements are larger.  Also, torsion effects are larger at the abutment 
bearings but only in the transverse direction, for which the service displacement is zero (see 
Appendices C and D). 
 
Given that the trial single FP system has behavior essentially the same as that of the triple FP system 
of Appendix C, the displacement response will be essentially the same.  Accordingly, we utilize the 
dynamic analysis results for that system (Tables 11-6 and 11-7) and use 17.6

DEE inch  .  Note that 

the simplified analysis results gives 11.9
DEE inch  and use of this figure would have resulted in 

underestimation of demand and requirement to revise the bearing dimensions.  This difference in 
displacement prediction was expected due to the approach followed in scaling the ground motions for 
analysis (see Appendices C and D and Sections 10 to 12).  Based on the information on response in 
dynamic response history analysis, the actual displacement capacity of the bearings should be  

' 0.25 1.5 0.25 3.0 1.5 17.6 27.2
DES Ed inch        .  We select a concave plate of 

diameter equal to 70inch (a standard concave plate in Table 4-1) for which the nominal displacement 
capacity, when a 16inch slider is used, is (70-16)/2=27.0inch.  The actual displacement capacity (Fenz 

and Constantinou, 2008c) is * 156 4
27 27.7

156

R h
d inch

R
d

 
   , which is sufficient. 
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BEARING PROPERTIES 

The selected single FP bearing has the following geometry. 

 
 

 
Geometric Properties 
 
 156R inch ,  4h inch  
    R 156 4 160e R h inch  

 
70 16

27.0
2 2

C SD D
d inch

 
              Nominal displacement capacity 

  * 156 4
27 27.7

156

R h
d inch

R
d

 
  

 
Actual displacement capacity 

 
Frictional Properties of Pier Bearings  
 
Bearing pressure: p=936.5/(x82) = 4.66ksi 
Using equation (4-15),  
 
3-cycle friction0.122-0.01x4.66=0.075; adjust for high velocity (-0.015) 0.060 (lower bound 
friction) 
1st-cycle friction1.2x0.060=0.072. 
 
Upper bound values of friction (using data on -factors of report MCEER 07-0012) 
 

Aging:                1.10   [Table 12-1: sealed, normal environment] 
Contamination:    1.00   [Table 12-2; also Section 6 of Report MCEER 07-0012]. 
 Note that the factor 1.00 requires placing the bearing with the sliding surface facing down. 
(The value of the factor is 1.10 if the sliding surface is facing up). 
 
Travel:               1.20   [For travel of 2000m] 
 
max=1.10x1.00x1.20=1.320   [a=1; critical bridge] 
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However for conservatism, we use the same factor max=1.386 as used for the Triple FP 

system  of Appendix C. 
 
Note:  low temperature effects not considered 
 
Upper bound friction=0.072x1.3860.100 
 
Friction for pier bearings 
 
Lower bound   0.060  
Upper bound   0.100  

 
Frictional Properties of Abutment Bearings  
 
Bearing pressure: p=336.5/(x82) = 1.67ksi 
Using equation (4-15) (pressure is slightly below the limit of applicability of equation 4-15 but use with 
some exercise of conservatism): 
 
3-cycle friction0.122-0.01x1.67=0.105; adjust for high velocity (-0.015) 0.090 (lower bound friction) 
1st-cycle friction1.2x0.090=0.105 but adjust to 0.110 due to uncertainty (low pressure). 
 

Upper bound friction=0.110x1.3860.150 
 
Friction for abutment bearings 
 
Lower bound   0.090  
Upper bound   0.150  

 
Summary of Properties 

Property Abutment Bearing Pier Bearing Combined System 

eR  (inch) 160.0 160.0 160.0 

'd  (inch) 27.7 27.7 27.7 
   Lower Bound 0.090 0.060 0.068 
  Upper Bound 0.150 0.100 0.113 

 
 

The frictional properties of the combined system were calculated as weighted average friction: 
 

 



_

4 336.5 0.090 4 936.5 0.060 0.068
4 336.5 4 936.5lower bound

x x x x
X x

 

 

 



_

4 336.5 0.150 4 936.5 0.100 0.113
4 336.5 4 936.5upper bound

x x x x
X x

 

 
Force-Displacement Loops 
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The force-displacement loop of the system for the lower bound condition is shown below.   The 
displacement capacity of the bearings is 27.7inch.  Also, note that the force at zero displacement is 
0.068Wwhereas for the Triple FP system is 0.065W (see Appendix C).  The difference is due to 
motion on the inner sliding surfaces of the triple bearing prior to initiation of motion on the main 
concave surfaces.  This difference will result in a slightly smaller displacement demand in the single FP 
system when dynamic response history analysis is performed and provided that the two bearings are 
correctly modeled.  Nevertheless, this small difference indicates that the displacement capacity of 
the selected bearing should be sufficient. 
 

 

-30 -20 -10 0 10 20 30

-0.3

-0.2

-0.1

0
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F
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0.068

27.7inch
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EFFECT OF WIND LOADING 
 
Consider WS+WL and WV effects in the lower bound frictional conditions.  Per Table 10-3, the 
transverse wind load is: 
 
Abutment bearings (per bearing): 
 

WL+WS=2.3+5.9=8.2kip  
 

 =
WL+WS 8.2 0.027

Weight-WV 336.5-31.9
 

 
Breakaway friction may conservatively be estimated to be larger than  _ /2lower bound for the 

abutment bearings, which is 0.090/2=0.045.  This is larger than 0.027, therefore the abutment 
bearings will not move in wind. 
 
Pier bearings (per bearing): 
 

WL+WS=6.5+18.9=25.4kip  
 

  =
WL+WS 6.5+18.9 25.4 0.030

Weight-WV 936.5-102.9 833.6
 

 
Breakaway friction may conservatively be estimated to be larger than  _ /2lower bound for the pier 

bearings, which is 0.060/2=0.030.  This is equal to 0.03, therefore the pier bearings will not move in 
wind. 
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ANALYSIS FOR DISPLACEMENT DEMAND (Lower Bound Analysis) 
 
Analysis is performed in the DE using the single mode method of analysis (Section 3.7). 
Neglect substructure flexibility (subject to check). 
Perform analysis using bilinear hysteretic model of isolation system in the lower bound condition:   
 

POST-ELASTIC 
STIFFNESS 

Kd 
Qd 

LATERAL
DISPLACEMENT 

LATERAL
FORCE

CHARACTERISTIC 
STRENGTH 

 
      Y YIELD DISPLACEMENT 
 
 

The parameters are  / edK W R ,   0.068dQ W W and the yield displacement Y is zero. 
The effective period and effective damping are given by  
 

Equation (3-5),       


12 2 2
( )

eff
eff

eDeD

W WT g gW WgK g D RD R

 

Equations (3-7), (3-8), 
     

 
 
   
   
 

2 2

4 2
2 2 ( )

D
eff

DDeff D
eD e

WDE
W W DK D D
D R R

 

 
 

1) Let the displacement be  11.5D inch  
 

2) Effective period: 
 

   
 

1 12 2 2.90 sec0.068 386.4 386.4
11.5 160

eff

eD

T g g
D R

 

 
3) Effective damping: 

 


 

   
   
    
       

2 2 0.068 0.30911.50.068
160

eff
D

e

D
R

 Limit damping to 0.300   
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4) Damping reduction factor (equation 3-3): 
 

        
   

0.30.3 0.300 1.711
0.05 0.05

effB  

 
5) Spectral acceleration for period of 2.90sec (requires interpolation) from tabulated values of 

response spectrum for 5% damping (from Caltrans ARS website).  Calculate the corresponding 
displacement. 
 

T (sec) SA (g) 

1.1000 0.6600 

1.2000 0.6060 

1.3000 0.5600 

1.4000 0.5210 

1.5000 0.4870 

1.6000 0.4570 

1.7000 0.4310 

1.8000 0.4070 

1.9000 0.3860 

2.0000 0.3670 

2.2000 0.3280 

2.4000 0.2960 

2.5000 0.2820 

2.6000 0.2690 

2.8000 0.2460 

3.0000 0.2270 

3.2000 0.2100 

3.4000 0.1950 

3.5000 0.1880 

3.6000 0.1820 

3.8000 0.1710 

4.0000 0.1600 

4.2000 0.1530 

 

 
0.236 0.138
1.711A

gS g , 
 

  
2 2

2 2
0.138 386.4 2.9 11.4

4 4
a eff

D
ST x xS inch  

 
Accept as close enough to the assumed value.  Therefore,  11.4DD inch . 
 

6) Simplified methods of analysis predict displacement demands that compare well with results 
of dynamic response history analysis provided the latter are based on selection and scaling of 
motions meeting the minimum acceptance criteria (see Section 10.4).  Dynamic analysis 
performed using the scaled motions described in Section 10.4, which exceed the minimum 
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acceptance criteria by factor of about 1.2, will result in displacements larger than those of 
the simplified analysis by a factor larger than 1.2.    Accordingly, we adjust our estimate of 
displacement in the DE to  11.4 1.30 14.8DD x inch  
Add component in orthogonal direction: 
 

  2 2(0.3 14.8) 14.8 15.5DD x inch  
 

7) Displacement in the Maximum Earthquake: 
 

  1.5 1.5 15.5 23.3M DD D x inch   Say 24inch.  Or 24
MCEE inch  . 

 
8) The trial bearing has displacement capacity prior to stiffening equal to 27.7inch, therefore 

sufficient including any additional displacements due to torsion and service displacements.  
Torsion is generally accepted to be an additional 10% for the corner bearings.  
If  24MD inch , an additional 10% displacement well will be within the displacement 
capacity of the bearings prior.  It should be noted that only the abutment bearings may 
experience additional torsional displacement and only in the transverse direction.  The 
schematic below from free vibration analysis (with bearings modeled as linear springs) 
demonstrates how the bridge responds in torsion. 

 

 
 

 
 
The selected bearing should be sufficient to accommodate the displacement demand (but 
subject to check following dynamic analysis). 
 

COMPARISON TO DYNAMIC ANALYSIS RESULTS: 
 
Dynamic analysis has not been conducted for this system as the results are expected to be slightly 
less than those of the Triple FP system which has nearly identical behavior.  Response history analysis 
of the Triple FP system (reported in Section 11) resulted in a displacement demand in the DE for the 
critical abutment bearing equal to 17.6inch. The displacement capacity of the bearing should be just 

less than 0.25 1.5 0.25 3.0 1.5 17.6 27.2
DES ED x x inch       .  The capacity of the selected 

bearing is 27.7inch, thus sufficient.  For the transverse direction the displacement demand in the 
MCE is just less than 1.5x17.6=26.4inch which when adjusted for torsion it should be less than 
1.1x26.4=29.0inch27.7inch.  Therefore, there is possibility for the abutment bearings to impact the 
displacement restrainer in the MCE and when significant torsion is considered.  The Engineer may 
decide to either increase the size of the bearing or accept it as is because torsion is known to be 
minimal for friction pendulum isolators and the factor 1.1 used in the calculation of the displacement is 
conservative. 

60ft 

160ft 
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ANALYSIS TO DETERMINE FORCE FOR SUBSTRUCTURE DESIGN (Upper Bound Analysis) 
 
Analysis is performed in the DE for the upper bound conditions and using the bilinear hysteretic model 
with   0.113and Re=160in.  

 
1) Let the displacement be  9.5DD inch  

 
 

2) Effective period: 
 

   
 

1 12 2 2.37 sec0.113 386.4 386.4
9.5 160

eff

eD

T g g
D R

 

 
3) Effective damping: 

 


 

   
   
    
       

2 2 0.113 0.4179.50.113
160

eff
D

e

D
R

 

 
Limit damping to 0.3. 
 

4) Damping reduction factor (equation 3-3): 
 

        
   

0.30.3 0.3 1.711
0.05 0.05

effB  

 
5) Spectral acceleration from tabulated values of response spectrum for 5% damping (page E-11 

by interpolation).  Calculate the corresponding displacement. 
 

 
0.301 0.176
1.711A

gS g , 
 

  
2 2

2 2
0.176 386.4 2.37 9.7

4 4
a eff

D
ST x xS inch  

 
Accept as close enough to the assumed value of displacement.  Therefore,  0.176AS g . 
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CALCULATION OF BEARING AXIAL FORCES DUE TO EARTHQUAKE 
 
Lateral DE earthquake (100%)   
 

 
 
where W = 5092 kip 
 a = 0.138 (lower bound analysis) 

a = 0.176 (upper bound analysis) 
 

From equilibrium:  4xFx22.52=3.5xEQ   and 3.5xEQ 3.5F = × α × W
90.1 90.1

 

 
For lower bound analysis:  F =  27.3 kip 
For upper bound analysis:  F =  34.8 kip 
 
Vertical earthquake (100%) 
 
Consider the vertical earthquake to be described by the spectrum of Figure 10-5 multiplied by a 
factor of 0.7. A quick spectral analysis in the vertical direction was conducted by using a 3-span, 
continuous beam model for the bridge in which skew was neglected. The fundamental vertical period 
was 0.40 sec, leading to a peak spectral acceleration αS (5%)  of 1.09x0.7=0.76g g. Axial loads on 
bearings were determined by multi-mode spectral analysis in the vertical direction (utilizing at least 3 
vertical vibration modes): 
 
 For DE, abutment bearings:   178.0 kip 
 For DE, pier bearings:    560.5 kip 
 
Check Potential for Uplift in MCE (multiply DE loads by factor 1.5-this is conservative but 
appropriate to check uplift): 
 
Load combination: 
 0.9DL – (100% vertical EQ + 30% lateral EQ + 30% longitudinal EQ) 
 
Abutment bearings: 
 0.9 x 336.5 –1.5x(178.0 + 0.30 x 34.8) = 20.2 kip > 0  NO UPLIFT 
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Pier bearings: 
 0.9 x 936.5 –1.5x(560.5 + 0.30 x 34.8) =-13.6 kip 0   LIMITED UPLIFT POTENTIAL IN MCE 
 
Bearings need to be detailed to be capable of accommodating some small uplift of less than 1inch.  No 
need for special testing. 
   
Maximum compressive load due to earthquake lateral load 
 

a) Consider the upper bound case (lateral load largest) and the load combination, 30% lateral EQ 
+ 100% vertical EQ. 

 
For DE, pier bearings: 
 
    560.5 0.30 34.8 570.9

DEEP x kip  

For MCE, pier bearings: 
  
   1.5 1.5 570.9 856.4

DEMCE DEP P x kip  

 
b) Consider the lower bound case (DM largest) and the load combination, 30% lateral EQ + 100% 

vertical EQ. 
 
For DE, pier bearings: 
 
   560.5 0.30 27.3 568.7

DEEP x kip  

  
For MCE, pier bearings: 
 
   1.5 1.5 568.7 853.1

DEMCE DEP P x kip      

 
USE  575

DEEP kip ,  860
MCEEP kip

 
It should be noted that these loads do not occur at the maximum displacement (they are based on 
combination 100%vertical+30%lateral).  Nevertheless, they will be used for assessment of adequacy of 
the bearing plates by assuming the load to be acting at the maximum displacement.  This is done for 
simplicity and conservatism.  The Engineer may want to perform multiple checks in the DE and MCE 
for the various possibilities in the percentage assignment of vertical and lateral actions.  Also, in this 
analysis the factor used for calculating the bearing force in the MCE is 1.5, which is a conservative 
value.  A lower value may be justified but it would require some kind of rational analysis. 
 
(Note that the factor assumed for calculation of the MCE axial bearing load (assumed 1.5 in this 
example) could be different for the two considered combination cases with the 100% vertical+30% 
lateral combination likely to have a larger value than the 30% vertical+ 100% lateral combination). 
 
Check for sufficient restoring force 
 
Check worst case scenario, upper bound conditions 
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  dynamic 0.113 ,   quai-static 0.113/2 0.057  

 Using equation (3-28) with   0.057 , D=9.7inch and  

eR 160T = 2π 2π  = 4.04 sec
 g 386.4

=  

   
     

1/4 1/4D 9.7T=4.04sec< 28 ×  = 28  ×  = 4.29 sec
g 386.4

0.05 0.05
μ 0.057

  

OK, sufficient restoring force (also meets the criterion that T = 4.04 sec < 6 sec).  Note that 

 the bearing just meets the sufficient restoring force criterion-therefore, use of a larger 

 radius bearing would have resulted in some permanent displacements. 

 
EFFECT OF SUBSTRUCTURE FLEXIBILITY 
 
Consider a single pier in the direction perpendicular to its plane. This is the direction of least pier 
stiffness. Assessment on the basis of this stiffness is conservative. Refer to Table 10-1 and Figure 
10-4 for properties. 
 

 
Notes: 

4I = 4 × 8.8 = 35.2 ft  
'

F yK  = 4 × K  = 4 × 103,000 = 412,000 kip/ft  
' 6 6

R rzK  = 4 × K  = 4 × 7.12×10  = 28.48×10 kip-ft/rad  
KF and KR are determined considering two piers acting in unison. 
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Per Section 3.7, single mode analysis, equation (3-36): 
 

 
 
 

-1

eff
F R c is

1 h × L 1 1K  =  +  +  + 
K K K K

 

 
where Kis is the effective stiffness of four pier isolators, and Kc is the column stiffness considering 
the rigid portions of the columns (see document Constantinou et al, 2007b, Seismic Isolation of 
Bridges, Appendix B for derivation). 
 

  
  

  

-13 2
2 2

c 2 2 2
l lK  = EI × l ×h  + l×h  +  + (h - L)×  + l×h
3 2

 

where E = 3600 ksi = 518,400 kip / ft2 
 

  
  

  

-13 2
2 2

c
20 20K = 518400×35.2× 20 ×3 + 20×3 + + (28.5 - 24.75)× + 20×3 = 3633.8 kip/ft
3 2

     

 
Pier isolator effective stiffness (for 4 bearings): 
 
Use the stiffness determined in upper bound analysis to calculate the maximum effect of 
substructure flexibility. 
 

pW  weight on four pier bearings=4x936.5=3746kip 

  0.100 for pier bearings-see table on page E-7. 
 9.7DD inch  


is

p p

e D
  + = K  = kip/in = 744.4 kip/ft
W W 3746 0.100x3746+ =62.03
R D 160 9.7

 

 
Total effective stiffness of pier/bearing system: 
 

   
     

-1 -1

eff,pier 6
F R c is

1 h × L 1 1 1 28.5 × 24.75 1 1K  =  +  +  +  =  +  +  + 
K K K K 412000 28.48×10 3633.8 744.4

 
 

 eff,pier  607.6 kip/ft = 50.63 kip/inK  =  

 
Abutment isolator effective stiffness (abutments assumed rigid): 
 
Use the stiffness determined in upper bound analysis. 
 

aW   weight on four abutment bearings=4x336.5=1346kip 

  0.150  for abutment bearings-see table on page E-7. 
 9.7DD inch  
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
eff,abut

a a

e D
  + = K  = kip/in = 350.8 kip/ftW W 1346 0.150x1346+ =29.23

R D 160 9.7  
 
 

 
 
For the entire bridge: 
 

   eff
eff,pier eff,abut

W 5092T  = 2π  = 2π  = 2.55 sec
50.63 + 29.23 × 386.4K  + K × g

 

 
By comparison, without the effect of substructure flexibility, Teff = 2.37 sec. Since the ratio 2.55 / 
2.37 = 1.076 < 1.10, the substructure flexibility effect can be neglected. 
 
 
BEARING CONCAVE PLATE ADEQUACY (REQUIRED MINIMUM PLATE THICKNESS) 
 
Critical are pier bearings.   
 
Service Conditions Check 
 
 PD = 936.5 kip 
 PL = 348.4 kip (static plus cyclic components) 
 ∆s = assume such that the end of the inner slider is at position of least plate thickness 
         
Factored load: 
 
     1.25 1.75 1.25 936.5 1.75 348.4 1780.3D LP P P x x kip  

               1.5 1.5 936.5 1404.8DP P kip   Case Strength IV does not control 
 
Concrete bearing strength (equation 8-1) for ' 4000cf psi and confined conditions: 
 
 '1.7 1.7 0.65 4 4.42b c cf f x x ksi    
 
Diameter b1 of concrete area carrying load (equation 8-2): 
 

Keff,abut =29.23 k/in Keff,pier =50.63 k/in 
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 1

4 4 1780.3
22.65

4.42
u

b

P x
b inch

f x 
    

 
Loading arm (equation 8-3).  
 Dimension b is the slider diameter-see page E-6: 
 

 1 22.65 16
3.33

2 2

b b
r inch

 
    

 
Required moment strength Mu (equation 8-4 with correction factor CF per Figure 8-5 for 
b/b1=16/22.65=0.71): 
 

2 2 2 2
1 4.42 3.33 22.6 3.33

1 4.42 1 0.94
2 3 2 16 3

29.37 /

u b b

r b r x
M f f CF x x x

b

kip in in

                
      

   

Required minimum thickness (equation 8-6): 
 

4 4 29.37
1.70

0.9 45
u

b y

M x
t inch

F x
  

 
Bearing plate is ductile iron ASTM A536, Gr. 65-45-12 with 45yF ksi  minimum.  

Selected concave plate has thickness of 2inch, thus adequate.   
 
Seismic DE Conditions Check 
 
The seismic check of the critical pier bearing is performed for the DE conditions for which lateral 
displacement is equal to either (a) the longitudinal displacement which is equal to 0.5

DES E   or 

0.5x1+16.8=17.3inch (portion of service displacement of 1inch plus the DE displacement, which now is 
taken as the one calculated for the Triple FP system-this is slightly conservative as the two system 
are nearly identical but the single FP has slightly more effective friction, 0.068 vs 0.065), or (b) the 
transverse displacement which is equal to 16.8inch plus some torsion effect.  Herein we assume that 
the torsion effect will be an additional part of less than 10% for the abutment bearings and therefore 
an additional 0.1x60ft/160ft=0.0375 for the pier bearings (see page C-12 for schematic with bridge 
dimensions).  Therefore, the displacement should be less than 1.0375x16.8=17.4inch. 
 
Therefore, the check is performed for a factored load and lateral displacement 

       1.25 0.5 1.25 936.5 0.5 348.4 575 1920
DEu D L EP P P P x x kip , D=17.4inch.   

The peak axial force and the peak lateral displacement do not occur at the same time so the check is 
conservative.  The bearing adequacy will be determined using the centrally loaded area approach (see 
Section 8.4) so that the lateral force is not needed.  The drawings below show the bearing with the 
sliding surface facing up.  The calculations are identical to the case where the sliding surface is facing 
down provided that the strength of concrete is the same for above and below the bearing. 
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The bearing in the deformed position is illustrated below.  
 

 
Concrete bearing strength (equation 8-1) for ' 4000cf psi and confined conditions: 
 
 '1.7 1.7 0.65 4 4.42b c cf f x x ksi    
 
Diameter b1 of concrete area carrying load (equation 8-2): 
 

 1

4 4 1920
23.5

4.42
u

b

P x
b inch

f x 
    

 
Dimension b is the slider diameter of16inch. Loading arm (equation 8-3):  
 

 1 23.5 16
3.75

2 2

b b
r inch

 
    

 
Required moment strength Mu (equation 8-4 with correction factor CF per Figure 8-5 for 
b/b1=16/23.5=0.68): 
 

2 2 2 2
1 4.42 3.75 23.5 3.75

1 4.42 1 0.87
2 3 2 16 3

35.5 /

u b b

r b r x
M f f CF x x x

b

kip in in

                
      

   

Required minimum thickness (equation 8-6): 
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4 4 35.5
1.87

0.9 45
u

b y

M x
t inch

F x
  

 
Bearing plate is ductile iron ASTM A536, Gr. 65-45-12 with 45yF ksi  minimum.  

Selected concave plate has thickness larger than 2inch, thus adequate.  Note that the plate is safe in 
the DE check even when one considers the slider to be positioned in such a way that the maximum 
bending occurs at the minimum thickness section (2inch).  That is, the plate is safe for any position of 
the slider.  Also, the plate is safe for any position of the slider for an assumed material strength of 
40ksi, which further increases the confidence in the selection of the plate minimum thickness as 
2inch. 
 
Seismic MCE Conditions Check 
 
The seismic check of the critical pier bearing is performed for the MCE conditions for which lateral 
displacement is equal to either (a) the longitudinal displacement which is equal to 0.25 1.5

DES E   or 

0.25x1+1.5x16.8=25.5inch (portion of service displacement of 1 inch plus the MCE displacement which 
is 1.5 times the DE displacement calculated for the pier bearing in the dynamic analysis), or (b) the 
transverse displacement which is equal to 1.5x16.8=25.2inch plus some torsion effect.  We follow the 
approach in DE check so that the displacement should be less than 1.0375x25.2, say 26inch. 
 
Therefore, the check is performed for a factored load and lateral displacement 

      1.25 0.25 1.25 936.5 0.25 348.4 860 2118
MCEu D L EP P P P x x kip , D=26inch.   

The peak axial force and the peak lateral displacement do not occur at the same time so the check is 
conservative.  The bearing adequacy will be determined using the centrally loaded area approach (see 
Section 8.4) so that the lateral force is not needed. 
 
The plate adequacy checks follow the procedure used for the DE but with use of  values equal to 
unity and use of expected rather than minimum material strengths. 
 
Concrete bearing strength (equation 8-1) for ' 4000cf psi and confined conditions (also c=1.0): 
 
 '1.7 1.7 1 4 6.8b c cf f x x ksi    
 
Diameter b1 of concrete area carrying load (equation 8-2): 
 

 1

4 4 2118
19.9

6.8
u

b

P x
b inch

f x 
    

Note that the available area has diameter of 20inch, therefore b1=19.9inch is just acceptable.  Had b1 
was larger than 20inch, the elliptical area approach of Section 8.4 should have been followed. 
 
Dimension b is the slider diameter of16inch. Loading arm (equation 8-3):  
 



Appendix E                                              Single Friction Pendulum System Calculations 
                                                                                 Three-Span Bridge with Skew 

E-22 
 

 1 19.9 16
1.95

2 2

b b
r inch

 
    

 

 
 

 
Required moment strength Mu (equation 8-4 with correction factor CF per Figure 8-5 for 
b/b1=16/19.9=0.80): 
 

2 2 2 2
1 6.8 1.95 19.9 1.95

1 6.8 1 0.95
2 3 2 16 3

14.3 /

u b b

r b r x
M f f CF x x x

b

kip in in

                
      

   

Required minimum thickness (equation 8-6): 
 

4 4 14.3
1.13

1 45
u

b y

M x
t inch

F x
  

 
Bearing plate is ductile iron ASTM A536, Gr. 65-45-12 with 45yF ksi minimum and expected 

strength.  
 
Selected concave plate has thickness larger than 2inch, thus adequate. 
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BEARING HOUSING PLATE ADEQUACY (REQUIRED MINIMUM PLATE THICKNESS) 
 
The housing plate is subjected to the load transferred by the slider, regardless of the position of the 
concave plate.  Therefore, the adequacy assessment is controlled by the value of the factored load 
and not the value of the lateral displacement.  Accordingly, important is the factored load in the DE, 
which is larger than the one for service conditions (MCE conditions do not controlled because the  
factors are taken as unity).  Critical are pier bearings for which the factored load is 1920kip. 
 
The housing plate of the loaded bearing is illustrated below.  

 
Concrete bearing strength (equation 8-1) for ' 4000cf psi and confined conditions: 
 
 '1.7 1.7 0.65 4 4.42b c cf f x x ksi    
 
Diameter b1 of concrete area carrying load (equation 8-2): 
 

 1

4 4 1920
23.5

4.42
u

b

P x
b inch

f x 
    

 
It is obvious that for the bearing configuration shown above, bending in the housing plate occurs over 
the tapered part for which there is sufficient thickness.  There is no need to perform further 
calculations.   
 
It should also be noted that the 1inch thick portion of the housing plate is not subjected to any 
bending and is not actually needed other than for transport purposes and for sealing the bearing.  It 
may be replaced by a thinner cover plate. 
  

  


